Dégradation de schistes argileux fossilifères (bassin d’Autun, France, Permien), partie I : caractérisation de la spéciation et de la réactivité du fer par spectrométrie Mössbauer, diffraction des rayons X, porosimétrie et mesure de perméabilité
ODIN, Giliane P.
Centre de recherche sur la Paléobiodiversité et les Paléoenvironnements [CR2P]
Centre de Recherche sur la Conservation [CRC ]
Centre de recherche sur la Paléobiodiversité et les Paléoenvironnements [CR2P]
Centre de Recherche sur la Conservation [CRC ]
MERTZ, Jean Didier
Centre de Recherche sur la Conservation [CRC ]
Laboratoire de recherche des monuments historiques [LRMH]
Voir plus >
Centre de Recherche sur la Conservation [CRC ]
Laboratoire de recherche des monuments historiques [LRMH]
ODIN, Giliane P.
Centre de recherche sur la Paléobiodiversité et les Paléoenvironnements [CR2P]
Centre de Recherche sur la Conservation [CRC ]
Centre de recherche sur la Paléobiodiversité et les Paléoenvironnements [CR2P]
Centre de Recherche sur la Conservation [CRC ]
MERTZ, Jean Didier
Centre de Recherche sur la Conservation [CRC ]
Laboratoire de recherche des monuments historiques [LRMH]
< Réduire
Centre de Recherche sur la Conservation [CRC ]
Laboratoire de recherche des monuments historiques [LRMH]
Langue
en
Article de revue
Ce document a été publié dans
Annales de Paléontologie. 2015, vol. 101, n° 2, p. 75-85
Elsevier Masson
Résumé en anglais
Fossil-bearing shale specimens that include sulfides in their compositions are chemically reactive and sometimes also mechanically fragile. This decay is often related to iron sulfate efflorescence resulting from the ...Lire la suite >
Fossil-bearing shale specimens that include sulfides in their compositions are chemically reactive and sometimes also mechanically fragile. This decay is often related to iron sulfate efflorescence resulting from the oxidation of sulfide compounds. The processes underlying these degradations are poorly known, thus impeding the elaboration of curative or preventive treatments. The present contribution aims to identify the origin of museum specimen alterations. It focuses on the Flouest collection housed at the Muséum national d’Histoire naturelle (MNHN, Paris, France) and originating from the Autun Basin (Saône-et-Loire,France; Permian). To evaluate the alteration of MNHN specimens, it appeared necessary to compare their composition with that of unaltered shale so as to identify chemical changes occurring during ageing. Therefore new material was collected in the Autun Basin, among others on the locality of Muse that corresponds to the same lithostratigraphic unit than that of the MNHN specimens. The present article focuseson the combined use of X-ray diffraction and Mössbauer spectrometry for characterizing the speciation and reactivity of iron within the shale matrix. Crystalline pyrite was evidenced by X-ray diffraction (XRD) on one sample only and elemental analysis showed that iron is present in large excess with respect to sulfur. Iron sulfide, if present, involves a minor fraction of iron. A more complete characterization of iron-bearing phases was achieved with Mössbauer measurements, showing that a great part of iron, between approx. 25% and 65%, corresponds to iron(II) incorporated in clay minerals (illite and vermiculite weredetected by XRD). Similar percentages of these iron(II) signatures were found for MNHN specimens and new shale samples, suggesting that iron(II) present in clays is not affected by ageing. This point is complementary highlighted by porosity and permeability measurements showing that the pore size distribution of the samples originating from Muse is mostly unimodal and narrow (average radius below 10 nm). As a result, the shale is poorly permeable to water and almost fully impermeable to oxygen. This might explain the poor reactivity of iron(II) during ageing. Iron(III)-bearing phases were also identified. On new shale samples, they exclusively involve clay minerals. On MNHN specimens, poorly crystallized iron(III) sulfates are additionally observed. The presence of iron(III) oxyhydroxides appeared unlikely. The change of iron speciation provoked by the alteration of the matrix also mainly corresponds to the emergence of more or less crystallized iron(III) sulfates probably formed though iron sulfide oxidation. These phase show ever remain in the inner part of shale and cannot account for the large efflorescence of iron(II) sulfates observed nearby the fossil.< Réduire
Mots clés en anglais
Shale
Fossil
Pyrite
Autun Basin
Oxidation
Iron Sulfide
Clay
Mössbauer
Origine
Importé de halUnités de recherche