Show simple item record

hal.structure.identifierLaboratoire de Physique des Solides [LPS]
hal.structure.identifierDepartment of Physics
dc.contributor.authorKHUNTIA, P.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierScience et Ingénierie des Matériaux et Procédés [SIMaP]
dc.contributor.authorVELÁZQUEZ, Matias
hal.structure.identifierLaboratoire de Physique des Solides [LPS]
dc.contributor.authorBARTHÉLEMY, Quentin
hal.structure.identifierLaboratoire de Physique des Solides [LPS]
dc.contributor.authorBERT, Fabrice
hal.structure.identifierLaboratoire de Physique des Solides [LPS]
dc.contributor.authorKERMARREC, Edwin
hal.structure.identifierLaboratoire de Physique des Solides [LPS]
dc.contributor.authorLEGROS, A.
hal.structure.identifierLaboratoire de Physique Théorique de la Matière Condensée [LPTMC]
dc.contributor.authorBERNU, Bernard
hal.structure.identifierLaboratoire de Physique Théorique de la Matière Condensée [LPTMC]
hal.structure.identifierInstitut universitaire de France [IUF]
dc.contributor.authorMESSIO, L.
hal.structure.identifierJozef Stefan Institute [Ljubljana] [IJS]
hal.structure.identifierFaculty of Mathematics and Physics
dc.contributor.authorZORKO, Andrej
hal.structure.identifierLaboratoire de Physique des Solides [LPS]
dc.contributor.authorMENDELS, P.
dc.date.issued2020-04
dc.identifier.issn1745-2473
dc.description.abstractEnSpin liquids are exotic phases of quantum matter challenging Landau's paradigm of symmetry-breaking phase transitions. Despite strong exchange interactions, spins do not order or freeze down to zero temperature. While well-established for 1D quantum antiferromagnets, in higher dimension where quantum fluctuations are less acute, realizing and understanding such states represent major issues, both theoretical and experimental. In this respect the simplest nearest-neighbor Heisenberg antiferromagnet Hamiltonian on the highly frustrated kagome lattice has proven to be a fascinating and inspiring model. The exact nature of its ground state remains elusive and the existence of a spin-gap is the first key-issue to be addressed to discriminate between the various classes of proposed spin liquids. Here, through low-temperature Nuclear Magnetic Resonance (NMR) contrast experiments on high quality single crystals, we single out the kagome susceptibility and the corresponding dynamics in the kagome archetype, the mineral herbertsmithite, ZnCu$_3$(OH)$_6$Cl$_2$. We firmly conclude that this material does not harbor any spin-gap, which restores a convergence with recent numerical results promoting a gapless Dirac spin liquid as the ground state of the Heisenberg kagome antiferromagnet.
dc.description.sponsorshipLiquides de Spin Quantiques sur réseau Kagome - ANR-18-CE30-0022
dc.language.isoen
dc.publisherNature Publishing Group
dc.title.enGapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2
dc.typeArticle de revue
dc.identifier.doi10.1038/s41567-020-0792-1
dc.subject.halChimie/Matériaux
dc.identifier.arxiv1911.09552
bordeaux.journalNature Physics
bordeaux.page469-474
bordeaux.volume16
bordeaux.issue4
bordeaux.peerReviewedoui
hal.identifierhal-02624312
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02624312v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Physics&rft.date=2020-04&rft.volume=16&rft.issue=4&rft.spage=469-474&rft.epage=469-474&rft.eissn=1745-2473&rft.issn=1745-2473&rft.au=KHUNTIA,%20P.&VEL%C3%81ZQUEZ,%20Matias&BARTH%C3%89LEMY,%20Quentin&BERT,%20Fabrice&KERMARREC,%20Edwin&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record