Show simple item record

hal.structure.identifierPhysique des Défauts et de la Plasticité [Institut Pprime] [PDP]
dc.contributor.authorJOULAIN, Anne
hal.structure.identifierPhysique des Défauts et de la Plasticité [Institut Pprime] [PDP]
dc.contributor.authorAUDURIER, Valérie
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierDepartment of Electrical and Computer Engineering
dc.contributor.authorSILVAIN, Jean-François
hal.structure.identifierENDOmmagement et durabilité [Institut Pprime] [ENDO]
dc.contributor.authorGADAUD, Pascal
hal.structure.identifierPhysique des Défauts et de la Plasticité [Institut Pprime] [PDP]
dc.contributor.authorBONNEVILLE, Joël
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorAZINA, Clio
hal.structure.identifierDepartment of Electrical and Computer Engineering
dc.contributor.authorLU, Yongfeng
dc.date.issued2021
dc.identifier.issn1044-5803
dc.description.abstractEnIn the frame of thermal management applications, copper metal matrix reinforced by carbon fibers (CF) are undoubtedly one of the most promising composites for heat sinks. In this work, two types of composite materials were produced: Cu(Cusingle bondTi)x/CF composites fabricated with a mixture of Cu and Cusingle bondTi powders by a solid-liquid co-existent phase process and Cu/CF composites fabricated without the Cusingle bondTi powder. The mechanical properties and post-deformation microstructures of both composite materials have been investigated. Compression tests were performed at room temperature under constant strain-rate deformation condition. Elastic properties were examined using a dynamic resonant method over the temperature range 20 °C - 250 °C. The results show that the addition of Ti and the resulting formation of the TiC interphase at the Cu-CF interfaces are able to create strong interfacial bonding evidenced by a deformation without pull-out. When the volume fraction of CFs reaches 40%, crack percolation occurs in the Cu(CuTi)/CF composite leading to the sample ruin in case of strong interfaces. In the case of Cu/CF, fiber pull-out allows for deformation.
dc.language.isoen
dc.publisherElsevier
dc.subject.enMetal matrix composite
dc.subject.enMicrostructure
dc.subject.enMechanical properties
dc.subject.enCarbon fiber
dc.subject.enCopper matrix
dc.title.enCorrelation of the mechanical properties of Cu/C composite materials with the chemistry of Cu C interfacial zone
dc.typeArticle de revue
dc.identifier.doi10.1016/j.matchar.2021.111364
dc.subject.halChimie/Matériaux
bordeaux.journalMaterials Characterization
bordeaux.page111364
bordeaux.volume179
bordeaux.peerReviewedoui
hal.identifierhal-03326590
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03326590v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Materials%20Characterization&rft.date=2021&rft.volume=179&rft.spage=111364&rft.epage=111364&rft.eissn=1044-5803&rft.issn=1044-5803&rft.au=JOULAIN,%20Anne&AUDURIER,%20Val%C3%A9rie&SILVAIN,%20Jean-Fran%C3%A7ois&GADAUD,%20Pascal&BONNEVILLE,%20Jo%C3%ABl&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record