Mössbauer characterization of <sup>119</sup>Sn<sup>4+</sup> Dopant ions in the antiferromagnetic ilmenite NiTiO<sub>3</sub>
Langue
en
Article de revue
Ce document a été publié dans
Solid State Communications. 2009, vol. 149, n° 37-38, p. 1535-1538
Elsevier
Résumé en anglais
Magnetic hyperfine splitting of the <sup>119</sup>Sn<sup>4+</sup> nuclear levels in the antiferromagnetic NiTiO<sub>3</sub> was for the first time observed using the Mössbauer effect. For the majority of the <sup>119</su ...Lire la suite >
Magnetic hyperfine splitting of the <sup>119</sup>Sn<sup>4+</sup> nuclear levels in the antiferromagnetic NiTiO<sub>3</sub> was for the first time observed using the Mössbauer effect. For the majority of the <sup>119</sup>Sn<sup>4+</sup> dopant ions, the saturation value of the transferred hyperfine field (at 4.2 K, H = 5.25 T) is found to be equal to that previously reported for <sup>119</sup>Sn<sup>4+ </sup>in the antiferromagnetic MnTi0<sub>3</sub>. This finding shows that in both ilmenites the spin polarization of Sn<sup>4+</sup> is produced by the divalent cation half-filled e<sup>2</sup><sub>g</sub> orbitals involved in interlayer superexchange interactions and implies the location of the dopant within titanium (111) layers. The principal V<sub>zz</sub> component of the EFG at the Sn<sup>4+</sup> site in NiTiO<sub>3</sub> is found to have a positive sign and be aligned along the [111] axis, as it was the case for Sn<sup>4+</sup> in MnTiO<sub>3</sub>. Lattice-sum calculations on the basis of a simple ionic point-charge model, lead to an erroneous result (in either titanate the sign of V<sub>zz</sub> on the Ti<sup>4+</sup> site would be negative) and thus demonstrate their failure in identifying the Sn sites.< Réduire
Mots clés en anglais
Antiferromagnetic materials
Nickel titanates
Point charge approximation
Electric field gradients
Superexchange interactions
Spin polarization
Hyperfine magnetic field
Hyperfine splitting
Doping
Mössbauer effect
Origine
Importé de halUnités de recherche