LiMSO(4)F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope.
Langue
en
Article de revue
Ce document a été publié dans
Physical Chemistry Chemical Physics. 2010, vol. 12, n° 47, p. 15512-15522
Royal Society of Chemistry
Résumé en anglais
A theoretical study of the lithium intercalated LiMSO(4)F and deintercalated MSO(4)F systems, where M = Fe, Co and Ni has been performed within the framework of density functional theory. Beyond predictions of structural ...Lire la suite >
A theoretical study of the lithium intercalated LiMSO(4)F and deintercalated MSO(4)F systems, where M = Fe, Co and Ni has been performed within the framework of density functional theory. Beyond predictions of structural evolution and average voltages versus a lithium electrode, we have applied partial density of states and Bader's topological analysis of the electron density to the study of lithium deintercalation. Upon lithium extraction, charge rearrangement occurs for nickel between different d-orbitals, but with little net positive charge gain, while cobalt and iron atoms end up with a clear oxidized state. The participation of oxygen ions in accepting the electron of the lithium is thus enhanced for LiNiSO(4)F. However, this effect does not affect the long-range electrostatic interactions a lot in the lithiated phase, since the valence of all transition metals is very close due to initial lower oxidized state for the Ni atom in the host. It is found that this is not essentially a long-range electrostatic interaction within the lithiated phase but within the host which explains, at least partly, the increase in voltage by passing from Fe to Ni. Our results also shed light upon the possibility of getting an approximate evaluation of the local strain associated with delithiation from the atomic volume evolutions, which are also likely to affect the electrochemical potential.< Réduire
Origine
Importé de halUnités de recherche