Thermoelectric properties of chromium disilicide prepared by mechanical alloying
Langue
en
Article de revue
Ce document a été publié dans
Journal of Materials Science. 2013, vol. 48, n° 17, p. 6018-6024
Springer Verlag
Résumé en anglais
CrSi and Cr1−x Fe x Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples ...Lire la suite >
CrSi and Cr1−x Fe x Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples were characterized by powder X-ray diffraction, scanning, and transmission electron microscopy and electron microprobe analysis. The final crystallite size of CrSi2 obtained from the XRD patterns is about 40 and 80 nm for SS- and WC-milled powders, respectively, whereas the size of the second phase inclusions in the hot pressed samples is about 1-5 μm. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, and figure of merit (ZT) were analyzed in the temperature range from 300 to 800 K. While the ball-milling process results in a lower electrical resistivity and thermal conductivity due to the presence of the inclusions and the refinement of the matrix microstructure, respectively, the Seebeck coefficient is negatively affected by the formation of the inclusions which leads to a modest improvement of ZT.< Réduire
Mots clés en anglais
Thermoelectric properties
Chromium disilicide
Mechanical alloying
Origine
Importé de halUnités de recherche