Afficher la notice abrégée

dc.contributor.authorESTEVES, Leandro
dc.contributor.authorIZIDORO, André
dc.contributor.authorBITSCH, Bertram
dc.contributor.authorJACOBSON, Seth A.
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorRAYMOND, Sean N.
dc.contributor.authorDEIENNO, Rogerio
dc.contributor.authorWINTER, Othon C.
dc.date.issued2022
dc.identifier.issn0035-8711
dc.description.abstractEnPlanets between 1 and 4 R<SUB>⊕</SUB> (Earth radius) with orbital periods <100 d are strikingly common. The migration model proposes that super-Earths migrate inwards and pile up at the disc inner edge in chains of mean motion resonances. After gas disc dispersal, simulations show that super-Earth's gravitational interactions can naturally break their resonant configuration leading to a late phase of giant impacts. The instability phase is key to matching the orbital spacing of observed systems. Yet, most previous simulations have modelled collisions as perfect accretion events, ignoring fragmentation. In this work, we investigate the impact of imperfect accretion on the 'breaking the chains' scenario. We performed N-body simulations starting from distributions of planetary embryos and modelling the effects of pebble accretion and migration in the gas disc. Our simulations also follow the long-term dynamical evolution of super-Earths after the gas disc dissipation. We compared the results of simulations where collisions are treated as perfect merging events with those where imperfect accretion and fragmentation are allowed. We concluded that the perfect accretion is a suitable approximation in this regime, from a dynamical point of view. Although fragmentation events are common, only ~10 per cent of the system mass is fragmented during a typical 'late instability phase', with fragments being mostly reacreted by surviving planets. This limited total mass in fragments proved to be insufficient to alter qualitatively the final system dynamical configuration - e.g. promote strong dynamical friction or residual migration - compared to simulations where fragmentation is neglected.
dc.language.isoen
dc.publisherOxford University Press (OUP): Policy P - Oxford Open Option A
dc.subject.enprotoplanetary discs
dc.subject.enplanets and satellites: formation
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.subject.en85-10
dc.title.enThe 'breaking the chains' migration model for super-Earth formation: the effect of collisional fragmentation
dc.typeArticle de revue
dc.identifier.doi10.1093/mnras/stab3203
dc.subject.halPlanète et Univers [physics]
dc.identifier.arxiv2111.00059
bordeaux.journalMonthly Notices of the Royal Astronomical Society
bordeaux.page2856-2868
bordeaux.volume509
bordeaux.peerReviewedoui
hal.identifierinsu-03678907
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//insu-03678907v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&amp;rft.date=2022&amp;rft.volume=509&amp;rft.spage=2856-2868&amp;rft.epage=2856-2868&amp;rft.eissn=0035-8711&amp;rft.issn=0035-8711&amp;rft.au=ESTEVES,%20Leandro&amp;IZIDORO,%20Andr%C3%A9&amp;BITSCH,%20Bertram&amp;JACOBSON,%20Seth%20A.&amp;RAYMOND,%20Sean%20N.&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée