Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorVICTOR, Stéphane
ORCID: 0000-0002-0575-0383
IDREF: 148688942
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorRECEVEUR, Jean-Baptiste
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorMELCHIOR, Pierre
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorLANUSSE, Patrick
dc.date.accessioned2022-07-13T12:30:12Z
dc.date.available2022-07-13T12:30:12Z
dc.date.issued2022-05
dc.identifier.issn1524-9050en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/140479
dc.description.abstractEnThis article deals with the issue of tracking a reference optimal trajectory for an autonomous nonlinear vehicle model by designing both lateral and longitudinal robust feedback control and a suited feedforward control. In previous works, a strategy based on a human-driver field of view was used to plan an optimal trajectory reference. The optimization has been made using a Genetic Algorithm (GA), and the obtained trajectory has been injected into a Potential Field (PF) so as to be reactive to unforeseen events by using a point mass model. Here, the previously developed GA-PF planification process is integrated in a new complete global planning and tracking method and applied to a validation nonlinear vehicle model. This control tracking method is developed in two strategies: a bicycle model is used as model inversion for feedforward design and a robust control is designed as feedback control in order to take the vehicle (mass and velocity) and road (slope and adherence) parameter variations into account. A lateral nonlinear control and a longitudinal robust control are designed. Realistic autonomous car simulation results are provided on an overtaking scenario and a round-about scenario.
dc.language.isoENen_US
dc.subject.enAutonomous vehicles
dc.subject.entrajectory planning
dc.subject.entrajectory tracking
dc.subject.enoptimization
dc.subject.enbicycle model
dc.subject.enmodel inversion
dc.subject.enrobust control
dc.title.enOptimal Trajectory Planning and Robust Tracking Using Vehicle Model Inversion
dc.typeArticle de revueen_US
dc.identifier.doi10.1109/TITS.2020.3045917en_US
dc.subject.halSciences de l'ingénieur [physics]/Automatique / Robotiqueen_US
bordeaux.journalIEEE Transactions on Intelligent Transportation Systemsen_US
bordeaux.page1-14en_US
bordeaux.volume23
bordeaux.hal.laboratoriesLaboratoire d’Intégration du Matériau au Système (IMS) - UMR 5218en_US
bordeaux.issue5
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03172431
hal.version1
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Transactions%20on%20Intelligent%20Transportation%20Systems&rft.date=2022-05&rft.volume=23&rft.issue=5&rft.spage=1-14&rft.epage=1-14&rft.eissn=1524-9050&rft.issn=1524-9050&rft.au=VICTOR,%20St%C3%A9phane&RECEVEUR,%20Jean-Baptiste&MELCHIOR,%20Pierre&LANUSSE,%20Patrick&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée