Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorLE, Tien Dung
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.date.accessioned2022-04-21T15:01:44Z
dc.date.available2022-04-21T15:01:44Z
dc.date.issued2022-01-01
dc.identifier.issn2215-0161en_US
dc.identifier.otherhttps://doi.org/10.1016/j.mex.2022.101655en_US
dc.identifier.urioai:crossref.org:10.1016/j.mex.2022.101655
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/139892
dc.description.abstractEnModeling of diffusion/enzymatic reaction in porous electrodes operating in direct electron transfer mode is developed. The solution at the pore-scale is extremely cumbersome due to the complex geometry of the porous material. The upscaled model is much easier to solve, while keeping the essential of the physico-chemical behavior. The method to carry out the solution can be described as follows • The effective diffusion coefficient involved in the macroscopic equations is accurately computed by solving a closure problem in a representative elementary volume. • Electrochemical parameters are identified by a direct resolution of the macroscopic model solved with a COMSOL Multiphysics code coupled to a curve fit procedure carried out on voltammetry experimental results using a Matlab code. Electrodes with different thicknesses may be considered in the fitting procedure to improve accuracy. An alternative use of the COMSOL Multiphysics code is to predict the electrode behavior and further optimize its design, if all the electrochemical parameters are identified. • To validate the upscaled model, the pore scale model may be solved with direct numerical simulations carried out in a 3D microstructure using another COMSOL Multiphysics code to compare with the solution of the upscaled model in the 1D-reduced geometry.
dc.description.sponsorshipModélisation d'électrodes poreuses pour leur conception optimisée - ANR-17-CE08-0005en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourcecrossref
dc.subject.enEnzymatic porous electrode
dc.subject.enDirect electron transfer
dc.subject.enUpscaled model
dc.subject.enParameters identification
dc.title.enNumerical tools for the simulation of enzymatic bio porous-electrodes operating in DET mode
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.mex.2022.101655en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
bordeaux.journalMethodsXen_US
bordeaux.page101655en_US
bordeaux.volume9en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03613999
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccCC BY-NC-NDen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=MethodsX&rft.date=2022-01-01&rft.volume=9&rft.spage=101655&rft.epage=101655&rft.eissn=2215-0161&rft.issn=2215-0161&rft.au=LE,%20Tien%20Dung&LASSEUX,%20Didier&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée