Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorAMBROSIO, D.
dc.contributor.authorTONGNE, A.
dc.contributor.authorWAGNER, V.
dc.contributor.authorDESSEIN, G.
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCAHUC, Olivier
IDREF: 151236100
dc.date.accessioned2021-12-21T09:53:22Z
dc.date.available2021-12-21T09:53:22Z
dc.date.issued2022-01-01
dc.identifier.issn1526-6125en_US
dc.identifier.urioai:crossref.org:10.1016/j.jmapro.2021.10.062
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124269
dc.description.abstractEnA damage evolution law is proposed to consider the frictional behavior within an Eulerian material after full damage as a Lagrangian material, where the mesh explicitly describes the newly born interface interactions. This approach is prominent for simulating severe plastic deformation (SPD) processes during which material separation can occur. Among these, orthogonal cutting represents the simplest process for comparison with the simulation because it offers accessibility for measuring physical quantities in situ in the vicinity of the tool. Therefore, a numerical model based on a coupled Eulerian-Lagrangian formulation to simulate segmented chip formation mechanisms during orthogonal cutting was developed. A simple damage initiation criterion was used, and the damage evolution criterion was coded in the ABAQUS subroutine VUSDFLD. The model can simulate both segmented and continuous chip formation, depending on the experimental configuration, while satisfactorily predicting chip morphology and physical quantities such as temperature, primary shear band and cutting forces. Additionally, a non-negligible material side flow observed experimentally was successfully predicted by simulation. The model accuracy in predicting the material plastic behavior is auspicious for its subsequent extension to the three-dimensional model of SPD processes (i.e., milling, friction stir welding, etc.).
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enCoupled eulerian-lagrangian (CEL)
dc.subject.enDamage evolution
dc.subject.enFrictional behavior
dc.subject.enOrthogonal cutting
dc.subject.enSegmented chip formation
dc.title.enA new damage evolution criterion for the coupled Eulerian-Lagrangian approach: Application to three-dimensional numerical simulation of segmented chip formation mechanisms in orthogonal cutting
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jmapro.2021.10.062en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalJournal of Manufacturing Processesen_US
bordeaux.page149-163en_US
bordeaux.volume73en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03498786
hal.version1
hal.date.transferred2021-12-21T09:53:24Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Manufacturing%20Processes&rft.date=2022-01-01&rft.volume=73&rft.spage=149-163&rft.epage=149-163&rft.eissn=1526-6125&rft.issn=1526-6125&rft.au=AMBROSIO,%20D.&TONGNE,%20A.&WAGNER,%20V.&DESSEIN,%20G.&CAHUC,%20Olivier&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée