Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMONTEMURRO, Marco
IDREF: 171660978
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorREFAI, Khalil
IDREF: 228324254
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCATAPANO, Anita
dc.date.accessioned2021-12-21T09:52:42Z
dc.date.available2021-12-21T09:52:42Z
dc.date.issued2022-01-01
dc.identifier.issn0263-8223en_US
dc.identifier.urioai:crossref.org:10.1016/j.compstruct.2021.114862
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124268
dc.description.abstractEnArchitected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to-mass ratio can be conveniently exploited to enhance heat transfer. In this work, a numerical approach to predict the effective thermal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on a general numerical homogenisation scheme and an explicit description of the representative volume element (RVE) of the ACM. Numerical analyses have been conducted on 31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends on the relative density and the geometrical features of the RVE. Moreover, starting from the database of RVEs geometries, seven configurations are chosen to design graded ACMs through a computer-aided design-compatible topology optimisation method based on non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on the well-known solid isotropic material with penalisation (SIMP) approach. In particular, the penalisation law used in the SIMP method is replaced by a physically-based penalisation scheme obtained by interpolating the results of the homogenisation for each RVE topology and a suitable post-processing phase is developed to recover the distribution of the graded ACM over the structure from the results of the optimisation process. The effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken from the literature
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enAdditive manufacturing
dc.subject.enArchitected cellular materials
dc.subject.enHeat conduction
dc.subject.enHomogenisation
dc.subject.enNURBS hyper-surfaces
dc.subject.enTopology optimisation
dc.title.enThermal design of graded architected cellular materials through a CAD-compatible topology optimisation method
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.compstruct.2021.114862en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalComposite Structuresen_US
bordeaux.page114862en_US
bordeaux.volume280en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03498784
hal.version1
hal.date.transferred2021-12-21T09:52:45Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composite%20Structures&rft.date=2022-01-01&rft.volume=280&rft.spage=114862&rft.epage=114862&rft.eissn=0263-8223&rft.issn=0263-8223&rft.au=MONTEMURRO,%20Marco&REFAI,%20Khalil&CATAPANO,%20Anita&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record