Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorDESMONS, Florian
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCOQUERELLE, Mathieu
IDREF: 228223172
dc.date.accessioned2021-12-16T13:22:52Z
dc.date.available2021-12-16T13:22:52Z
dc.date.issued2021-07-01
dc.identifier.issn0021-9991en_US
dc.identifier.urioai:crossref.org:10.1016/j.jcp.2021.110322
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124196
dc.description.abstractEnNumerical methods for the simulation of two-phase flows based on the common one-fluid model suffer from important transfer of momentum between the two-phases when the density ratio becomes important, such as with common air and water. This problem has been addressed from various numerical frameworks. It principally arises from the hypothesis that the momentum equation can be simplified by subtracting the continuity equation to it. While this approach is correct in a continuous point of view, it however brings numerical errors at the discrete level, from both spatial and temporal points of view, errors that can highly deteriorate the fluids dynamic. Moreover, we have found this problem to be more and more present as the grid is refined. To correct this problem, we propose a High-Order Momentum Preserving (HOMP) method that is, additionally, independent on the interface representation (may it be level set, volume of fluid, etc.). Furthermore, HOMP can be easily implemented in an existing finite volume code. We show that this method permits to efficiently suppress dreadful momentum transfers at the interface on demonstrating examples. We also present how it enhances the quality of two-phase flows computation through the simulation of the dynamic of a breaking wave and the impact of a droplet in a liquid pool.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enNavier-Stokes
dc.subject.enTwo phase flows
dc.subject.enNumerical method
dc.subject.enConsistent transport
dc.subject.enMomentum
dc.subject.enHigh-order method
dc.title.enA generalized high-order momentum preserving (HOMP) method in the one-fluid model for incompressible two phase flows with high density ratio
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jcp.2021.110322en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalJournal of Computational Physicsen_US
bordeaux.page110322en_US
bordeaux.volume437en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03483332
hal.version1
hal.date.transferred2021-12-16T13:23:20Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2021-07-01&rft.volume=437&rft.spage=110322&rft.epage=110322&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=DESMONS,%20Florian&COQUERELLE,%20Mathieu&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record