Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorVALDES-PARADA, Francisco-José
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.date.accessioned2021-12-16T13:14:52Z
dc.date.available2021-12-16T13:14:52Z
dc.date.issued2021-07-01
dc.identifier.issn1070-6631en_US
dc.identifier.urioai:crossref.org:10.1063/5.0056345
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124195
dc.description.abstractEnThis work addresses the macroscopic modeling of flow near porous media boundaries. This includes the vicinity with a fluid channel (i.e., a fracture), another rigid porous medium, or an impervious non-deformable solid. The analysis is carried out for one-phase, steady, incompressible, inertial, and isothermal flow of a Newtonian fluid, considering slip effects at the solid–fluid interfaces. A one-domain approach is proposed, employing a simplified version of the volume averaging method, while conceiving the system as two homogeneous regions separated by an inter-region. The upscaling procedure yields a closed macroscopic model including a divergence-free average (filtration) velocity for the mass balance equation and a unique momentum equation having a Darcy structure. The latter involves apparent permeability tensors that are constant in the homogeneous regions and position-dependent in the inter-region. All the permeability tensors are determined from the solution of coupled closure problems that are part of the developments. The derived model is validated by comparisons with direct numerical simulations in several two-dimensional configurations, namely, two porous media of contrasted properties in direct contact or separated by a fracture, the boundaries being either flat or wavy and a porous medium in contact with a flat or corrugated solid wall or separated from the latter by a fluid layer. The simplicity and versatility of the derived model make it an interesting alternative to existing one- and two-domain approaches developed so far.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enComputational fluid
dc.subject.endynamics
dc.subject.enMass balance
dc.subject.enFlow boundary effects
dc.subject.enNewtonian mechanics Liquid solid interfaces
dc.subject.enNewtonian fluids
dc.subject.enPorous media
dc.subject.enNavier Stokes equations
dc.title.enFlow near porous media boundaries including inertia and slip: A one-domain approach
dc.typeArticle de revueen_US
dc.identifier.doi10.1063/5.0056345en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalPhysics of Fluidsen_US
bordeaux.page073612en_US
bordeaux.volume33en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue7en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03289702
hal.version1
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physics%20of%20Fluids&rft.date=2021-07-01&rft.volume=33&rft.issue=7&rft.spage=073612&rft.epage=073612&rft.eissn=1070-6631&rft.issn=1070-6631&rft.au=VALDES-PARADA,%20Francisco-Jos%C3%A9&LASSEUX,%20Didier&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée