Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorLE, B. D.
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorDAU, Frederic
dc.contributor.authorPHAM, D. H.
dc.contributor.authorTRAN, T. D.
dc.date.accessioned2021-12-16T10:40:42Z
dc.date.available2021-12-16T10:40:42Z
dc.date.issued2021-09-01
dc.identifier.issn0263-8223en_US
dc.identifier.urioai:crossref.org:10.1016/j.compstruct.2021.114170
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124186
dc.description.abstractEnThis paper presents a 3D simulation of interface debonding in composite material using 3D Discrete Element Model (DEM). The simulation is based on the experimental results obtained by Guillebaud-Bonnafous and al. Bonnafous2012. A single fragmentation testing of an singer impregnated hemp yarn embedded into a epoxy matrix was investigated. In DEM, matrix and yarn are supposed to be brittle materials and follow a linear fracture model. The discrete elements of matrix are connected by the cohesive beams whereas the one of yarn are connected by the spring links. The cohesive contact laws are implemented to model interface debonding between yarn and matrix (yarn/matrix). Piecewise linear elastic laws usually used in Cohesive Zone Models are retained in this work. The numerical results obtained by DEM are compared with experiment data and finite element modeling on the stress–strain curve and the fragmentation process in yarn during the test. This comparison allows to validate the models used in DEM. To reduce the discrete elements number and save computational time, the bi-disperse medium in DEM for matrix and yarn is specifically elaborated in this study.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enComposite material
dc.subject.enInterface debonding
dc.subject.enDiscrete element model
dc.subject.enCohesive law
dc.subject.enBi-disperse medium
dc.title.enDiscrete element modeling of interface debonding behavior in composite material: Application to a fragmentation test
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.compstruct.2021.114170en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalComposite Structuresen_US
bordeaux.page114170en_US
bordeaux.volume272en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03482883
hal.version1
hal.date.transferred2021-12-16T10:40:45Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composite%20Structures&rft.date=2021-09-01&rft.volume=272&rft.spage=114170&rft.epage=114170&rft.eissn=0263-8223&rft.issn=0263-8223&rft.au=LE,%20B.%20D.&DAU,%20Frederic&PHAM,%20D.%20H.&TRAN,%20T.%20D.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée