Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorNUBER, Franziska
dc.contributor.authorSCHIMPF, Johannes
hal.structure.identifierInstitut de biochimie et génétique cellulaires [IBGC]
dc.contributor.authorDI RAGO, Jean-Paul
hal.structure.identifierInstitut de biochimie et génétique cellulaires [IBGC]
dc.contributor.authorTRIBOUILLARD TANVIER, Deborah
dc.contributor.authorPROCACCIO, Vincent
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorMARTIN-NEGRIER, Marie-Laure
hal.structure.identifierLaboratoire Maladies Rares: Génétique et Métabolisme (Bordeaux) [U1211 INSERM/MRGM]
dc.contributor.authorTRIMOUILLE, Aurelien
dc.contributor.authorBINER, Olivier
dc.contributor.authorVON BALLMOOS, Christophe
dc.contributor.authorFRIEDRICH, Thorsten
dc.date.accessioned2021-10-26T08:47:10Z
dc.date.available2021-10-26T08:47:10Z
dc.date.issued2021-06-16
dc.identifier.issn2045-2322en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112871
dc.description.abstractEnNADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.title.enBiochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I
dc.typeArticle de revueen_US
dc.identifier.doi10.1038/s41598-021-91631-3en_US
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologieen_US
dc.identifier.pubmed34135385en_US
bordeaux.journalScientific Reportsen_US
bordeaux.volume11en_US
bordeaux.hal.laboratoriesMaladies Rares : Génétique et Métabolisme (MRGM) - UMR 1211en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDDeutsche Forschungsgemeinschaften_US
hal.identifierhal-03403436
hal.version1
hal.date.transferred2021-10-26T08:47:15Z
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scientific%20Reports&rft.date=2021-06-16&rft.volume=11&rft.issue=1&rft.eissn=2045-2322&rft.issn=2045-2322&rft.au=NUBER,%20Franziska&SCHIMPF,%20Johannes&DI%20RAGO,%20Jean-Paul&TRIBOUILLARD%20TANVIER,%20Deborah&PROCACCIO,%20Vincent&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée