Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierMechanics surfaces and materials processing [MSMP]
dc.contributor.authorRODRÍGUEZ DE CASTRO, Antonio
dc.date.accessioned2021-10-20T08:33:46Z
dc.date.available2021-10-20T08:33:46Z
dc.date.issued2019-04-01
dc.identifier.issn0309-1708en_US
dc.identifier.uriorcid:0000-0002-6102-6744:10.1016/j.advwatres.2019.01.012
dc.identifier.urioai:crossref.org:10.1016/j.advwatres.2019.01.012
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112827
dc.description.abstractEnA large number of complex fluids commonly used in industry exhibit yield stress, e.g., concentrated polymer solutions, waxy crude oils, emulsions, colloid suspensions and foams. Yield stress fluids are frequently injected through unconsolidated porous media in many fields such as soil remediation and reservoir engineering, so modelling their flow through this type of media is of great economic importance. However, obtaining macroscopic laws to model non-Newtonian flow poses a considerable challenge given the dependence of the viscosity of the fluid on pore velocity. For this reason, no macroscopic equation is currently available to predict the relationship between injection flow rate and the pressure drop generated during the flow of a yield stress fluid without using any adjustable parameter. In this work, a method to extend Darcy's equation to the flow of yield stress fluids through model unconsolidated porous media consisting of packs of spherical beads is presented. Then, the method is experimentally validated through comparison with a total of 572 experimental measurements obtained during the flow of a concentrated aqueous polymer solution through different packs of glass spheres with uniform size. An improved prediction of the pressure drop-flow rate relationship is achieved by taking into account the non-linear relationship between apparent shear rate and average pore velocity.
dc.language.isoENen_US
dc.sourceorcid
dc.sourcecrossref
dc.title.enExtending Darcy's law to the flow of yield stress fluids in packed beds: Method and experiments
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.advwatres.2019.01.012en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalAdvances in Water Resourcesen_US
bordeaux.page55-64en_US
bordeaux.volume126en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03387991
hal.version1
hal.date.transferred2021-10-20T08:33:54Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advances%20in%20Water%20Resources&rft.date=2019-04-01&rft.volume=126&rft.spage=55-64&rft.epage=55-64&rft.eissn=0309-1708&rft.issn=0309-1708&rft.au=RODR%C3%8DGUEZ%20DE%20CASTRO,%20Antonio&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée