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a b s t r a c t 

A large number of complex fluids commonly used in industry exhibit yield stress, e.g., concentrated polymer solutions, waxy crude oils, emulsions, colloid suspensions 
and foams. Yield stress fluids are frequently injected through unconsolidated porous media in many fields such as soil remediation and reservoir engineering, so 
modelling their flow through this type of media is of great economic importance. However, obtaining macroscopic laws to model non-Newtonian flow poses a 
considerable challenge given the dependence of the viscosity of the fluid on pore velocity. For this reason, no macroscopic equation is currently available to predict 
the relationship between injection flow rate and the pressure drop generated during the flow of a yield stress fluid without using any adjustable parameter. In 
this work, a method to extend Darcy’s equation to the flow of yield stress fluids through model unconsolidated porous media consisting of packs of spherical 
beads is presented. Then, the method is experimentally validated through comparison with a total of 572 experimental measurements obtained during the flow of a 
concentrated aqueous polymer solution through different packs of glass spheres with uniform size. An improved prediction of the pressure drop-flow rate relationship 
is achieved by taking into account the non-linear relationship between apparent shear rate and average pore velocity. 

1. Introduction 

The flow of complex fluids in unconsolidated porous media is in- 
volved in many economically important industrial applications, e.g., re- 
mediation of polluted soils ( Gastone et al., 2014 ), Enhanced Oil Recov- 
ery (EOR) ( Wang et al., 2017 ), rock fracturing ( Roustaei et al., 2016 ) and 
liquid food engineering ( Welti-Chanes et al., 2005 ). Numerous complex 
fluids are shear-thinning, showing a decrease in shear viscosity as the ap- 
plied shear rate is increased. Shear-thinning fluids are extensively used 
in petroleum engineering and soil remediation to improve the micro- 
scopic sweep of the reservoir through stabilization of the injection front 
( Lake, 1989; Silva et al., 2012; Wever et al., 2011 ). In some cases, fluids 
with shear-rate dependent viscosity additionally present a yield stress, 
i.e., a threshold value in terms of shear stress below which they do not 
flow. In the specific field of petroleum engineering, the drilling fluids 
injected into rocks for the drilling of wells are often designed so as to 
have a yield stress in order to prevent cutting from settling when circula- 
tion stops ( Lavrov, 2013; Coussot, 2014 ). Some examples of yield stress 
fluids used in oil industry include emulsions, drilling muds, polymeric 
gels such as Carbopol, hevy oils and foams ( Talon et al., 2014 ). Fur- 
thermore, a number of fracturing fluids used in hydraulic fracturing as 
gelling agents exhibit a yield stress designed to enhance proppant trans- 
port ( Roustaei et al., 2016 ). Among them, guar, hydroxypropyl guar, 
carboxymethyl hydroxypropyl guar, hydroxyethyl cellulose, and poly- 
acrylamide are of particular relevance ( Belyadi et al., 2016 ). 

Predicting the pressure drop of a yield stress fluid flowing through 
unconsolidated porous media is especially important, given that a great 
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number of petroleum reservoirs are located in unconsolidated forma- 
tions ( Peng et al., 2007; Pang and Liu, 2013 ). The majority of laboratory 
experiments in this field have been performed using beds of spherical 
beads, which represent an idealization of unconsolidated porous me- 
dia ( Rao and Chhabra, 1993; Tiu et al., 1997; Basu, 2001 ). The New- 
tonian case is generally well understood in this type of porous media 
and allows process design calculations with acceptable levels of accu- 
racy. The extensive literature regarding the flow of fluids with complex 
rheology through unconsolidated packed beds was critically reviewed 
by Chhabra et al. (2001) , and Sochi (2010) analysed the available mod- 
els for describing non-Newtonian single-phase flow in porous media. 
More recently, Rodríguez de Castro and Radilla (2017a) extended Forch- 
heimer’s law and Ergun’s equation to the flow of fluids with shear-rate- 
dependent viscosity through packs of glass spheres with uniform size. 
The latter authors determined the accuracy of the extended laws under 
creeping and inertial regimes from comparison with a full set of exper- 
iments. Nevertheless, the yield stress effect was not addressed in the 
preceding works and obtaining a macroscopic law for the flow of yield 
stress fluids has proved to be a stumbling-block. 

Talon and Bauer (2013) performed Lattice-Boltzmann simulations to 
solve 2D flow of Bingham yield stress fluids in porous media, and dis- 
tinguished three different flow regimes. These regimes corresponded to 
1) the flow of a single pore, 2) progressive pores opening and 3) flow of 
all pores. Furthermore, Chevalier et al. (2013) focused on obtaining a 
generic relationship between flow rate and pressure drop applicable to 
the Darcian flow of yield stress fluids through packed beds. These au- 
thors proposed a macroscopic equation in which only the parameters of 
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the rheological law of the injected fluid, the diameter of the beads and 
two coefficients related to the internal structure of the porous medium 

were used as inputs. Then, Chevalier et al. (2014) conducted NMR exper- 
iments which contributed to elucidate the structural parameters appear- 
ing in this generic law. However, the determination of these coefficients 
is still unclear and the proposed formula presents the inconvenient of 
assuming linear relationship between shear rate and Darcy velocity in 
definition of the apparent shear rate in the porous medium. Moreover, 
the extension of Darcy’s equation to the flow of yield stress fluids pro- 
posed by Chevalier et al. (2013) still has to be confirmed by further 
laboratory experiments given the serious lack of reliable experimental 
data in the literature ( Lavrov, 2013; Coussot, 2014 ). 

Inspired by the broad interest of extending Darcy’s law to the flow 

of yield stress fluids through model unconsolidated porous media, the 
objective of this work is to provide a straightforward procedure to pre- 
dict the relationship between pressure gradient and flow rate. The pro- 
posed method is also evaluated through comparison with experimental 
data. To do so, a series of flow experiments through four different packs 
of mono-size spherical glass beads were carried out using concentrated 
aqueous solutions of xanthan biopolymer presenting a yield stress. The 
effect of beads size on the accuracy of the predictions is then assessed 
and discussed. 

In the area of non-Newtonian flow in porous media, still very open, 
it is crucial to base the interpretations and the modelling on solid obser- 
vations. The experimental details concerning the injection of xanthan 
gum solutions in different types of porous media have been carefully 
evaluated and discussed in the past: Rodríguez de Castro (2014), Ro- 
dríguez de Castro et al. (2014, 2016, 2018 ), Rodríguez de Castro and 
Radilla (2017b) . In all these preceding works, the same aqueous poly- 
mer solution was used and the experimental aspects were thoroughly 
addressed, including a discussion on the rheological model, the exis- 
tence of a plateau viscosity, the capability of the fluid to emulate yield 
stress behaviour and the interactions between fluid and porous medium 

(polymer retention, mechanical degradation and polymer adsorption). 
For this reason, it was decided in the present work to capitalize the 
knowledge acquired from the preceding research by using the same ex- 
tensively investigated xanthan gum solution. 

2. Predicting the flow of yield stress fluids in packed beds 

2.1. Previous attempts to extend Darcy’s law to the flow of yield stress 
fluids 

Herschel-Bulkley empirical law ( Herschel and Bulkley, 1926 ) is com- 
monly used to describe the rheological behaviour under shear of a large 
group of time-independent yield stress fluids. This law can be written as 
follows: { 

� = �0 + � ̇γ� for � > �0 
�̇ = 0 for � ≤ �0 

(1) 

where � is the shear stress experienced by the fluid at a given shear rate 
�̇, �0 is the yield stress, a is the consistency and n is the flow index of 
the fluid. In the case of shear-thinning yield stress fluids, n is inferior to 
unity. The three parameters are generally obtained by fitting the data 
obtained by measuring the shear rate �̇ as a function of the applied shear 
stress � with a rheometer. 

Several attempts have been made to obtain a macroscopic law link- 
ing the injection flow rate to the resulting pressure drop during the flow 

of yield stress fluids in porous media ( Pascal, 1981 ; Pascal, 1983; Al- 
Fariss and Pinder, 1987; Chase and Dachavijit, 2005; Coussot, 2014 ). 
Pascal modified Darcy’s law by introducing a threshold pressure gradi- 
ent ∇ P t to account for the yield-stress ( Pascal, 1981 ): ∇ � � = 

� �0 √
� 
. ∇ P t is 

directly proportional to �0 and inversely proportional to the square root 
of the absolute permeability K . However, Pascal’s relationship presents 
the serios drawback of including a dimensionless constant � that must 
be empirically determined for each fluid-medium pair. Also, it only 

applies to the case n = 1. Indeed, the existence of experimentally ad- 
justable parameters with no clear physical meaning as inputs, which 
impedes direct computational predictions, is a major drawback of most 
available macroscopic flow expressions. In this regard, Shahsavari and 
McKinley (2016) conducted numerical simulations providing analytical 
expressions for such parameters in the particular case of fibrous materi- 
als, without including any specific dependence of these coefficients on 
the injection velocity. Only a few experimental works exist for the flow 

of yield stress fluids in porous media ( Al-Fariss and Pinder, 1987; Chase 
and Dachavijit, 2005; Chevalier et al., 2013; Chevalier et al., 2014; Ro- 
dríguez de Castro, 2016 ), and the ranges of variation of the flow rate are 
usually narrow. These experimental works showed that the relationship 
between the absolute value of the pressure gradient ∇ P and the absolute 
value of Darcy velocity u is of the same form as the constitutive equation 
of the fluid, i.e. ∇ P = ∇ P t + Cu n with C being a parameter that depends 
on the porous medium and the boundary conditions. 

More recently, Chevalier et al. (2013) presented a simple approach 
to extend Darcy’s law to the flow of yield stress fluids. This general law 

contains a yielding term which may be simply expressed as a function 
of the yield stress of the material and the bead size: 

∇ � = 
��0 

� � 
+ 

�� 

( 
� 

� � 

) � 

� � 
(2) 

with ΔP being the absolute value of the pressure drop through the 
packed bed of length L , ∇ � = 

Δ� 
� 
the magnitude of the pressure gra- 

dient, Q the volume flow rate, A the cross-sectional area, u = Q/A the 
absolute value of the Darcy velocity and d s the diameter of the spherical 
beads. The latter authors initially stated that � and � in Eq. (2) , should 
be universal factors for the flow through spherical beads. The first coef- 
ficient is related to the path of maximum width throughout the porous 
medium while the second coefficient reflects the pore size distribution. 
However, on the basis of the results obtained by NMR measurements, 
it was subsequently shown that � and � are two dimensionless coeffi- 
cients depending only on the distribution of shear rate intensity and on 
the coefficient n, which are in turn fluid-dependent ( Chevalier et al., 
2014 ). Also, u/d s was considered to be the apparent shear rate for the 
flow through such a porous medium, which is a serious flaw of Eq. (2) . 
Indeed, the apparent shear rate was shown not be proportional to u in 
the case of yield stress fluids flowing at low and moderate flow rates 
( Rodríguez de Castro and Radilla, 2017b ). 

The first (yielding) term on the right hand side of Eq. (2) corre- 
sponds to the critical pressure gradient below which no flow occurs. 
The second term is velocity-dependent, and expresses the additional vis- 
cous pressure drop above the yielding pressure once the fluid is flowing. 
Chevalier et al. (2013) experimentally determined the values of � and 
� , obtaining � = 12 for a Carbopol aqueous solution and � = 5.5 for a 
water-in-oil emulsion, which did not permit to validate the universality 
of this coefficient. In contrast, these authors found that � = 85 for both 
types of fluids. 

2.2. New approach to extend Darcy’s law to the flow of yield stress fluids 

As mentioned above, despite the method presented by 
Chevalier et al. (2013) being a valid approach, the choice of d s as 
characteristic length in the definition of the apparent shear rate and 
the non-dependence on injection velocity remain debatable. Also, the 
values of � and � are not easily predictable. For these reasons, the 
objective of this subsection is to present a method to simply predict 
the u vs. ∇ P relation by properly defining the actual shear rate and the 
shear viscosity of the fluid in the porous medium. 

Darcy’s law ( Darcy, 1856 ) describes the single-phase flow of in- 
compressible Newtonian fluids through porous media at low values of 
Reynolds number: 

∇ � = 
�

� 

� 

� 
= 

�

� 
� (3) 
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where � is the shear viscosity of the injected fluid, and K is the intrin- 
sic permeability. Moreover, Kozeny-Carman equation allows to predict 
K from the porosity � of the bed and the diameter of the beads using 
hydraulic radius theory: 

� = 
� 3 � 2 

� 

36 �( 1 − � ) 2 
(4) 

� being the Kozeny-Carman constant, the value of which is generally set 
to � = 5 in packs of spheres ( Kaviany, 1995 ). 

Previous works have shown that some concentrated polymer solu- 
tions are yield stress fluids ( Song et al., 2006; Carnali, 1991; With- 
comb and Macosko, 1978; Economides and Nolte, 2000; Khodja, 2008; 
Benmouffok-Benbelkacem et al., 2010 ). The steady-state shear flow 

of these solutions can be well described by the Herschel-Bulkley law 

( Eq. (1) ). A practical approach to study the flow of complex fluids 
through a porous medium consists in defining an equivalent viscosity 
�eq as being the quantity that must replace the viscosity in Darcy’s law to 
result in the same pressure drop actually measured ( Tosco et al., 2013 ): 

��� = � 
∇ � 

� 
(5) 

In order to predict �eq from the constitutive equation of the fluid, 
an apparent shear rate in the porous medium �̇�� has to be determined 
first. Assuming a bundle-of-capillaries model �̇�� is usually taken as four 
times the average pore velocity 4 u / � divided by the average pore throat 
radius ̄� (characteristic length of the microscopic flow) ( Chauveteau and 
Zaitoun, 1981; Chauveteau, 1982; Sheng, 2011 ). ̄r can be estimated from 

the permeability K and the porosity � of the porous medium, as proposed 
by Kozeny (1927) using a bundle-of-capillaries model: 

�̄ = 

√ 
8 � 

� 
(6) 

According to the preceding definition, �̇�� can be expressed as: 

�̇�� = 
4 �

� 
� 

�̄ 
= α

√
2 � √
�� 

(7) 

where � is an empirical shift factor known to be a function of both 
the bulk rheology of the fluid and the tortuosity of the packed bed 
( Chauveteau, 1982; Sorbie et al., 1989; López et al., 2003; López, 2004; 
Comba et al., 2011 ). Therefore, �̇�� corresponds to the wall shear rate 
in a pore section of radius �̄ . This definition of apparent shear rate is 
in contrast with the one used by Chevalier et al. (2013) , in which d s is 

taken as characteristic length instead of 
√

�� √
2 
. For the creeping flow of 

Herschel-Bulkley fluids, �eq can be obtained from Eqs. (1) and (7) : 

��� = 
�0 

√
�� 

�
√
2 � 

+ � 

( 

�

√
2 � √
�� 

) � −1 

(8) 

Keeping in mind the objective to propose a prediction method, an- 
alytical expressions for the calculation of � must be provided. In order 
to obtain such expressions, let us focus now on the determination of 
the wall shear rate in circular channels. For the steady flow of an in- 
compressible fluid through a circular channel of radius ̄� , the wall shear 
stress �w is related to the pressure gradient ∇ P as follows: 

�� = 
∇ � ̄� 

2 
(9) 

Using Eqs. (3) , (8) , (9) can be written as: 

�� = 

( 
�0 

�̇�� 
+ � ̇�� −1 

�� 

) 
� 

� 

�̄ 

2 
= 

1 

2 
√
2 

√ 
� 

� 

�̄ 

�
�0 + 

2 
� −3 
2 

� 
� +1 
2 � 

� −1 
2 

�̄ 

�1− � 
� � � (10) 

For a constant viscosity incompressible fluid, the wall shear rate 

�̇�,��������� is given by �̇�,��������� = �� 
4 � 

� 
�̄ 

, where �N is the shift fac- 
tor for the injection of a Newtonian fluid. �N is related to the tortuosity 
of the fluid flow through the packed bed and its value was shown to be 
0.69 for spherical beads ( Christopher and Middleman, 1965; Shenoy, 

1994 ). However, this value �N = 0.69 has been contested by some au- 
thors ( James and McLaren, 1975; Chaveteau, 1982 ). For this reason, in 
this work �N will be considered first as unknown and will be determined 
through fitting to the experimental u vs. ∇ P data. Then, the obtained �N 
will be compared to the values previously reported in the literature. 

The wall shear rate for the flow of liquids with a shear-rate- 
dependent viscosity can be calculated by using the Weissenberg- 
Rabinowitsch-Mooney equation ( Rabinowitsch, 1929; Mooney, 1931 ): 

�̇�� = 
�̇�,��������� 

3 

[ 

2 + 
d 
(
ln ̇��,��������� 

)

d 
(
ln �� 

)
] 

= 
�̇�,��������� 

3 

⎡ 
⎢ ⎢ ⎣ 
2 + 

d ( ln ̇��,��������� ) 
d � 

d � 

� ( ln �� ) 
�� 

d � + 
� ( ln �� ) 

��
d �

⎤ 
⎥ ⎥ ⎦ 

= 
�̇�,��������� 

3 

⎡ ⎢ ⎢ ⎣ 
2 + 

d ( ln ̇��,��������� ) 
d � 

� ( ln �� ) 
�� 

+ 
� ( ln �� ) 

��

d �
d � 

⎤ ⎥ ⎥ ⎦ 
(11) 

where � is a function of u . Weissenberg-Rabinowitsch-Mooney equation 
is commonly used to calculate the wall shear rate of complex fluids with 
non-parabolic velocity profiles, including yield stress fluids ( Macosko, 
1994; Steffe, 1996; Pipe et al., 2008; Sochi, 2015 ). The following as- 
sumptions are used in the derivation of Eq. (11) : incompressible fluid, 
steady state, laminar flow regime, no wall-slip, no end-effects, unidirec- 
tional flow, temperature is constant and properties are not a function of 
time or pressure ( Steffe, 1996 ). 

For a Herschel-Bulkley fluid, Eq. (11) becomes: 

�̇�� = 
�� 

�̄ 

4 � 

3 � 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
2 + 

�

( 

�0 + 2 
� 
2 � 

( 

�
� √
�� 

) � ) 

2 
� 
2 ���

( 

�
� √
�� 

) � 

− 2 � 

( 

�0 − 2 
� 
2 � ( � − 1 ) 

( 

�
� √
�� 

) n ) 
��

�� 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(12) 

From Eq. (12) , it can be deduced that � becomes the constant value 
α∗ = 

�� 
3 
( 2 + 

1 
� 
) for very high values of u . By combining Eqs. (7) and 

(12) , the following differential equation is obtained, which allows the 
determination of � as a function of u : 

� = 
�� 

�̄ 

2 
√
2 
√

� 

3 
√

� 

⎛ ⎜ ⎜ ⎜ ⎝ 
2 + 

�

(
�0 + 2 

� 
2 � 

(
�

� √
�� 

)� )

2 
� 
2 ���

(
�

� √
�� 

)� 
− 2 � 

(
�0 − 2 

� 
2 � ( � − 1 ) 

(
�

� √
�� 

)� )
��

�� 

⎞ ⎟ ⎟ ⎟ ⎠ 
(13) 

For the simpler case of a power-law fluid ( �0 = 0), Eq. (14) leads to 
� = 

�� 
3 
( 2 + 

1 
� 
) , which becomes � = �N for a Newtonian fluid. Therefore, 

� is a constant parameter only if �0 = 0. 
Eq. (13) can be numerically solved within a given range of u to obtain 

the relation between � and u . Then, the obtained relation can be used in 
Eq. (8) to obtain �eq . Once �eq has been determined, it can be entered 
in Eq. (3) , leading to the extension of Darcy’s law ( Eq. (14) ): 

∇ � = 
��� 

� 
� = 

� 1 

�
+ � 2 �

� −1 � � (14) 

with � 1 = 
�0 
√

� √
2 
√

� 
and � 2 = 

� 

� 
� +1 
2 

( 
2 
� 
) 

� −1 
2 . 

It is reminded that the value of �N is considered first as unknown and 
must be obtained by fitting Eq. (14) to the experimental ( u i , ∇ P i ) data. 
This is achieved by finding the value of �N that minimizes the sum � = ∑� 

� =1 ( |∇ � � − ∇ � ( � � ) | × ∇ � � ) , with N being the number of experimental 
data. 

By comparing the method presented in this subsection with the 
works of Chevalier et al. (2013) , it can be deduced from Eqs. (2) and 
(14) that: 

� = 
� 

1 
2 � � 

2 
1 
2 � 

1 
2 �

(15) 
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Moreover, Eq. (4) can be used together with Eq. (15) to express � as 
a function of only � and �, obtaining: 

� = 
2 

1 
2 �

1 
2 3 ( 1 − � ) 

��
= 

2 
1 
2 5 

1 
2 3 ( 1 − � ) 

��
(16) 

It can be concluded from the preceding equation that � is a constant 
at high injection flow rates, given that the value of � is also constant 
( � = �∗ ). Therefore, the first (yielding) term on the right-hand side of 
Eq. (2) can be considered a constant at high flow rates. However, this 
term depends on u at low and moderate values of u , which was not taken 
into account in the work of Chevalier et al. (2013) . 

Also, the following relationship can be obtained from comparison 
between Eqs. (2) and (14) : 

� = 
2 

� −1 
2 

� 
� −1 
2 � 

� +1 
2 

�� −1 � � +1 
� (17) 

Analogously, Eq. (4) can be used together with Eq. (17) to express � 

as a function of only � and �, obtaining: 

� = 
2 

3 � +1 
2 3 � +1 �

� +1 
2 ( 1 − � ) � +1 

� 2 � +1 
�� −1 = 

2 
3 � +1 
2 3 � +1 5 

� +1 
2 ( 1 − � ) � +1 

� 2 � +1 
�� −1 (18) 

Eq. (18) shows that � is also contant at high flow rates, while being 
a function of u at moderate and low flow rates. Moreover, � is not a 
function of d s , but depends on the fluid properties through �. This is 
contrast to the claim of Chevalier et al. (2013) according to which � and 
� are universal factors for a porous medium composed of an assembly 
of spheres. 

It should be kept in mind that elongational flows during the injec- 
tion of solutions of polymers presenting a certain degree of flexibil- 
ity through porous media are known to induce extra pressure losses 
with respect to pure shear flow ( Rodríguez et al., 1993; Müller and 
Sáez, 1999; Nguyen and Kausch, 1999; Seright et al., 2011; Amundarain 
et al., 2009 ). This is a result of the formation of transient entan- 
glements of polymer molecules due to the action of the extensional 
component of the flow. In the present work, we first hypothesize that 
the deviation of the experimentally measured pressure drop with re- 
spect to the viscous pressure drop are negligible. This hypothesis is then 
validated through analysis of the experimental results. 

3. Experimental methods and materials 

Experimental ∇ P vs. u measurements were performed by injecting 
a xanthan gum aqueous solution (yield stress fluid) through four packs 
of spherical glass beads. Flow experiments with filtered water (Newto- 
nian fluid) were also performed by following the procedure presented 
by Rodríguez de Castro and Radilla (2017a) in order to determine the 
permeability of the packed beds. The glass beads were first placed into 
transparent acrylic glass cylinders and then compactly packed by means 
of vibration with a sieve shaker. The inner diameter of the acrylic glass 
cylinders was D = 5 cm and the diameter of the glass spheres used in 
each of the four columns was uniform, with ds = 1 mm, 3 mm, 4 mm 

and 5 mm in each case. The length of the column was L = 20 cm. 
Two different configurations were used depending on the involved 

flow rates. For 0.12 L/h ≤ Q ≤ 6 L/h, the injection circuit was open and 
the fluid was injected through the packed beds at the selected flow rate 
using a dual piston pump (Prep Digital HPCL pump, A.I.T., France). 
For 9 L/h ≤ Q ≤ 250 L/h, the fluid was injected through a closed cir- 
cuit using a volumetric pump as performed by Rodríguez de Castro and 
Radilla (2017a) . A photo showing the experimental setup is provided 
as supplementary material (Fig. S1). Details of the experimental setup 
and procedure, including the working ranges of the instruments and the 
measurement uncertainties were provided by Rodríguez de Castro and 
Radilla (2017a) . The ranges of u imposed during the experiments with 
each packed bed are listed in Table 1 . 

Xanthan biopolymer is a microbial high molecular weight exo- 
polysaccharide produced by fermentation of X. campestris bacteria 

Table 1 
Range of average velocities imposed during the flow of the yield stress fluid 
through the packed beds as a function of d s . N is the number of experimental 
∇ P vs. u data (four repetitions for each data). 

d s Range of u (m/s) N 

1 mm 1.7 ×10 − 5 –3.5 ×10 − 3 27 
3 mm 1.7 ×10 − 5 –3.5 ×10 − 2 44 
4 mm 1.7 ×10 − 5 –2.8 ×10 − 2 39 
5 mm 1.7 ×10 − 5 –2.8 ×10 − 2 33 

( Garcia-Ochoa et al., 2000; Palaniraj and Javarman, 2011; Kumar 
et al., 2018 ). In solution state, an isolated macromolecule of this poly- 
mer is more or less rigid and with a typical contour length of 1 μm 

( Mongruel and Cloitre, 2003 ) and a transverse size of approximately 
2 nm. The stiffness of xanthan macromolecules leads to high levels of 
shear viscosity and highly shear-thinning behaviour of semidilute so- 
lutions in water. For this reason, the shear rheology of xanthan gum 

solutions is well described by the Herschel-Bulkley model ( Eq. (1) ) un- 
der steady-state conditions ( García-Ochoa and Casas, 1994; Song et al., 
2006; Rodríguez de Castro et al. 2014, 2016, 2018; Rodríguez de Cas- 
tro and Radilla, 2017b ). However, rigorously speaking, they should 
be referred to as pseudo-yield stress fluids. The capacity of xanthan 
gum solutions to emulate the shear rheology of a yield stress fluid and 
the effects of polymer concentration was experimentally assessed by 
Rodríguez de Castro et al. (2018) , concluding that concentrated solu- 
tions ( ∼7000 ppm) behave similarly to a yield stress fluid due to high 
viscosity values at low shear rates. 

Sixty litres of aqueous solution were prepared with xanthan gum 

concentration C p = 7000 ppm and the rheogram was obtained following 
the procedure presented by Rodríguez de Castro and Radilla (2017b) . 
Eq. (1) was then used to fit the rheogram ( Rodríguez de Castro et al., 
2014 ) giving �0 = 7.4 Pa, a = 0.37 Pa s n and n = 0.52. The rheogram of 
the solution and the Herschel-Bulkley fit are provided in Fig. 1 . The 
dynamic viscosity of water (solvent) was measured to be 0.0011 Pa s 
and the densities � of both the water and the xanthan gum solution were 
taken as 1000 kg/m 3 . Moreover, the rheograms of several effluent fluid 
samples were characterized and compared to that of the inflowing fluid 
at the highest injection flow rates in order to assess polymer degradation 
and retention on the pore walls. No significant difference was observed 
between the rheograms, proving that polymer degradation and polymer 
retention can be neglected. 

Despite the used glass beads being quite coarse as compared to most 
natural granular media, the explored sizes fall within the range of grain 
sizes reported for coarse sand and fine gravel, which are widely inves- 
tigated in hydrologic applications ( Morris and Johnson, 1967 ). More- 
over, these beads sizes are commonly used in previous research, e.g. 
Dukhan et al. (2014) , so this choice facilitates comparison with litera- 
ture data. Furthermore, the use of smaller beads may result in polymer 
retention, which was not observed in the present experiments. 

4. Results 

The flow experiments were conducted for both fluids (water and 
yield stress fluid) and were repeated four times. The number of repe- 
titions for yield stress fluid injection through each packed bed corre- 
sponds to 4 ×N (ranging from 108 to 176) as listed in Table 1 . The 4 ×N 

measures for each packed bed were considered to be an experimental 
set. A total of 572 measurements were performed during the flow ex- 
periments with the yield stress fluid. 

4.1. Experimental determination of � and k 

The weight of each packed bed was measured before and after satura- 
tion with water in order to determine � from the difference in mass. Also, 
the procedure followed by Rodríguez de Castro and Radilla (2017a) to 
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Fig. 1. (a) Rheogram of the injected yield stress fluid and (b) viscosity vs. shear 
rate relationship. The void circles represent experimental data and black solid 
lines represent the fitted curves using the Eq. (1) . 

Table 2 
� and K for the four different beads sizes. 

d s � K 

1 mm 0.36 ± 3% 5.9 ×10 − 10 m 2 ± 2% 

3 mm 0.34 ± 3% 5.1 ×10 − 9 m 2 ± 6% 

4 mm 0.35 ± 3% 9.5 ×10 − 9 m 2 ± 7% 

5 mm 0.34 ± 3% 1.3 ×10 − 8 m 2 ± 6% 

Table 3 
Values of �N , �

∗ and �̂ obtained for the four packed beds. 

d s �N �
∗ 

�̂

1 mm 0.62 0.81 1.07 
3 mm 0.66 0.86 1.01 
4 mm 0.63 0.82 1.00 
5 mm 0.80 1.04 1.25 

determine K from injection experiments with water was applied to the 
present measurements. The obtained values and for � and K are listed 
in Table 2 together with the associated uncertainties (95% confidence 
interval). 

4.2. Shear viscosity of the yield stress fluid in the porous media 

Eq. (13) was numerically solved within the involved range of u for 
both all the investigated packed beds using an implicit Runge-Kutta 
method. The resulting � versus u functions are represented in Fig. 2 
and the results obtained for �N are listed in Table 3 as a function of 
d s . It is noted that the value of �N was close to 0.68 (average value) in 
all the tested porous media for the polymer solution used in the present 
work. This is in very good agreement with the results of Christopher and 
Middleman (1965) , who obtained �N = 0.69. 

Fig. 2. �( u ) functions as numerically obtained from Eq. (13) corresponding to 
the injection of the 7000-ppm solution through the four packed beds. Purple 
colour corresponds to d s = 1 mm, red colour corresponds to d s = 3 mm, black 
colour corresponds to d s = 4 mm and blue colour corresponds to d s = 5 mm. Solid 
lines represent the computed �( u ) functions and dashed lines represent �̂. 

As mentioned in Section 2.2 , � becomes the constant value �∗ = 

�� 
3 
( 2 + 

1 
� 
) for very high values of u, i.e., when � ≫ �0 

1 
� � 

1 
2 � 

1 
2 

2 1∕2 � 
1 
� �

, in the case 

of Herschel-Bulkley shear-thinning fluids (0 < n < 1). In Fig. 2 , it can 
be observed that � monotonically decreases as u increases, so the condi- 

tion � ≫ �0 
1 
� � 

1 
2 � 

1 
2 

2 1∕2 � 
1 
� �

will be satisfied if � ≫ � ∗ = 
�0 

1 
� � 

1 
2 � 

1 
2 

2 1∕2 � 
1 
� �∗ 

. Consequently, 

the boundary condition � ( u = 10 5 u ∗ ) = �∗ was used to numerically solve 
Eq. (13) . The obtained �∗ values are also listed in Table 3 and are all 
close to 0.88 (average value). Regarding the sensitivity of � to the mi- 
crostructure of the packed bed, it can be deduced from Fig. 2 that higher 
values of d s (coarser microstructure) result in higher values of �. 

The value of �̇�� corresponding to each Darcy velocity u was calcu- 
lated with Eq. (7) following two different approaches. First, a constant 
value of �, named �̂ was determined for each porous medium by cal- 
culating the shift factor in terms of shear rate which led to the best 
superposition between the “in situ ” �eq vs. �̇�� data and the bulk rheo- 
logical law ( Eq. (1) ). The obtained values for �̂ are shown in Table 3 . 
The second approach consisted in using the �( u ) function obtained from 

Eq. (13) . The results of both approaches are presented in Fig. 3 , together 
with the bulk rheological law ( Eq. (1) ). In this figure, it can be observed 
that �eq is close to Eq. (1) at high values of u for both the constant �
and the variable- � methods. However, this is not the case at low and 
moderate values of u for which �eq approaches better Eq. (1) with the 
variable- � method. Also, �eq is expected to be greater than the bulk vis- 
cosity at high values of u in the presence of important inertial effects 
( Tosco et al., 2013; Rodríguez de Castro and Radilla, 2016 ). The fact 
that no important deviation of �eq with respect to �pm is observed in 
the present experiments reflects that inertial effects are not significant. 
Moreover, Fig. 3 shows that the shear rates involved in the flow through 
all porous media are within the same range as those measured with the 
rheometer during characterization of the fluid’s shear viscosity. 

4.3. Previous attempts to extend Darcy’s law to the flow of yield stress 
fluids 

The values of � and � were determined by fitting the experimental 
results presented in this work to Eq. (2) through minimization of the sum 

of the absolute values of the differences between fit and experimental 
data. The obtained values are listed in Table 4 , showing that � and � 

are porous medium-dependent as experimentally determined. Also, it is 
remarked that the values of these coefficients may depend on the range 
of imposed u , as they are obtained through fitting to experimental data. 
This dependence on u is taken into account by the new method proposed 
in the present work, as explained in Section 2.2 . The results of fitting 
Eq. (2) to the experimental data are shown in Fig. 4 . Moreover, the 
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Fig. 3. �eq for the flow of the yield stress fluids through the four packed beds: (a) d s = 1 mm, (b) d s = 3 mm, (c) d s = 4 mm, (d) d s = 5 mm. Symbols represent predictions 
and solid lines represent bulk viscosity as obtained from the rheometer ( Eq. (1) ). 

Fig. 4. ∇ P as a function of u and 
the corresponding fits obtained with 
Eq. (2) for (a) d s = 1 mm, (b) d s = 3 mm, (c) 
d s = 4 mm, (d) d s = 5 mm. 

Table 4 
Values of � and � used in Eq. (2) for the four packed beds. 

d s � � 

1 mm 8.29 306.32 
3 mm 9.86 257.09 
4 mm 11.83 247.32 
5 mm 12.21 216.82 

average errors of these fits are presented in Table 5 for different ranges 
of u . It is observed that the resulting fits are accurate within a large range 
of u . However, a major drawback of this method is that � and � need to 
be experimentally determined, which impedes prediction of the u vs. ∇ P 
relation. It is worth mentioning that the errors obtained by using � = 5.5 
and � = 85 as proposed in the work of Chevalier et al. (2013) are too 
big in the case of the present experiments and lead to very inaccurate 
predictions. 
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Table 5 
Average errors obtained by fitting Eq. (2) to the experimental ∇ P vs. u data, with the variable- � method 
and with the fixed- � method for different ranges of u . 

Range of u (m/s) Average error using Eq. (2) (%) Average error fixed- � (%) Average error variable- � (%) 

10 − 5 –10 − 4 32 84 26 
10 − 4 –10 − 3 8 23 5 
10 − 3 –10 − 2 2 7 3 
10 − 2 –10 − 1 1 4 3 

Fig. 5. ∇ P as a function of u and the corresponding predictions obtained with Eq. (14) for (a) d s = 1 mm, (b) d s = 3 mm, (c) d s = 4 mm and (d) d s = 5 mm. Symbols 
represent experimental measurements, red solid lines represent the predictions obtained with the variable- � method and blue dashed lines represent the predictions 
obtained with the fixed- � method. 

4.4. Experimental validation of the new prediction method 

Eq. (14) was used to predict the relation between ∇ P and u for the 
injection of the 7000-ppm solution through the four packed beds. The 
obtained predictions are presented in Fig. 5 together with the experi- 
mental results of measurements performed in the present work. In this 
figure, the errors bars correspond to a 95% confidence interval as ex- 
plained in Section 3 . From these results, the accuracy of the proposed 
methods for the prediction of ∇ P as a function of u during the flow of 
yield stress fluids through packed beds of spherical beads can be as- 
sessed. Fig. 5 shows that the variable- � approach provides more accu- 
rate predictions within the low and moderate u regions, which is in 
agreement with the arguments presented above. However, a less impor- 
tant difference is obtained between both methods for the highest values 
of u . The average errors obtained with the variable- � method and the 
fixed- � method for different ranges of u are summarized in Table 5 . It is 
observed that the variable- � method successfully predicts the ∇ P-u re- 
lationship for the flow of the yield stress fluid through the four packed 
beds, even though the obtained predictions are slightly less accurate 
in the case of d s = 1 mm. The overestimation of ∇ P reported in Figs. 4 
and 5 for the lowest flow rates may be related to the longer times needed 
to achieve stationary measurements of pressure drop within this region. 
This effect is similar as the one reported for rheological measurements 
at low shear rates, as shown in Fig. 1 . This is a consequence of the vis- 
cosity of the fluid continuously increasing over time as illustrated in Fig. 
S2. This effect will be discussed in Section 5 . ”

As mentioned above, � becomes the constant value �∗ = 
�� 
3 
( 2 + 

1 
� 
) 

when � ≫ � ∗ = 
�0 

1 
n � 

1 
2 � 

1 
2 

2 1∕2 � 
1 
� �∗ 

. This means that Eq. (14) presents a constant 

yielding term of value � 1 
�
and a constant “consistency ” term of value 

C 2 �
n − 1 for u ≫ u ∗ . In other words, Eq. (14) has the same form as 

Herschel-Bulkley empirical law ( Eq. (1) ) only if the preceding condi- 
tion is met. Therefore, the threshold Reynolds number Re ∗ above which 
the extended Darcy’s law for Herschel-Bulkley ( Eq. (14) ) fluids has the 
same form as Herschel-Bulkley equation is given by: 

� � ∗ = 
�� ∗ 

√
� 

�∗ 
(19) 

where �∗ is the shear viscosity of the fluid in the porous media at u ∗ . 
Re ∗ is represented as a function of K for the four packed beds in Fig. 6 
showing linear relationship. 

It is worth mentioning that, in spite of the negligible influence of 
inertial effects on the pressure drop vs. flow rate relationships in the 
case of the highly-viscous xanthan gum solutions used in this work, the 
procedure presented in Section 2.2 . is also valid to extend Forchheimer 
equation ( Forchheimer, 1901 ) to the case of yield stress fluids. This is 
explained by the fact that the inertial coefficient appearing in Forch- 
heimer equation does not depend on the shear rheology of the injected 
fluid as numerically ( Firdaouss et al., 1997; Yadzchi and Luding, 2012; 
Tosco et al., 2013 ) and experimentally ( Rodríguez de Castro and Radilla, 
2016; 2017a; 2017b ) proved in previous works. However, it must be 
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Fig. 6. Threshold Reynolds number Re ∗ ( Eq. (19) ) for the injection of the yield 
stress fluid through the four porous media. Squares represent experimental data 
and the solid line represents their linear adjustment obtained through standard 
Least Squares regression: Re ∗ = 3.2 × 10 6 K ( m 2 ). 

noted that even for Newtonian fluids, the macroscopic transport equa- 
tions governing inertial regime are still under debate in the literature. 
In particular, it was demonstrated that whereas Forchheimer regime is 
always well identified for inertial flow in disordered porous media, its 
appearance in ordered media is strongly dependent on the microstruc- 
ture and the orientation of the pressure gradient ( Lasseux et al., 2011; 
Agnaou et al., 2017 ). Therefore, a non-linear dependence of apparent 
viscosity on pore scale velocity is expected to increase the complexity 
of the problem. 

5. Discussion 

The values of �N obtained for all the tested porous media were al- 
ways very close to 0.69, which was the value theoretically predicted by 
( Christopher and Middleman, 1965 ). It should be noted that although 
�N = 0.69 is valid for the present experiments, this value must still be 
confirmed by further experiments in different yield stress fluid-packed 
beds combinations before declaring that it is a universal constant. Nev- 
ertheless, it can be firmly stated that the results reported in this work 
are a highly promising step in this direction. 

It can be deduced from Eq. (14) that � can be considered a constant 
value �∗ = 

�� 
3 
( 2 + 

1 
� 
) in the high flow rates region, i.e., when � ≫ � ∗ = 

�0 
1 
� � 

1 
2 � 

1 
2 

2 1∕2 � 
1 
� �

, and Eq. (14) can be written as: 

∇ � = ∇ � 0 + � � � (20) 

with ∇ � 0 = 
3 �0 

√
� √

2 
√

� �� ( 2+ 
1 
� ) 
and � = 

� 

� 
� +1 
2 

( 
2 
� 
) 

� −1 
2 [ 

�� 
3 
( 2 + 

1 
� 
) ] � −1 . This is in 

agreement with the results of Talon et al. (2014) , who stated that u 
scales linearly as ( ∇ P − ∇ P 0 ) in the case of a Bingham fluid ( n = 1) 
flowing at high u through a one-dimensional channel. Also, Nash and 
Rees (2017) showed that the manner in which flow begins once the 
threshold pressure gradient is exceeded strongly depends on the chan- 
nel size distribution of the porous media. The same authors ( Talon et al., 
2014; Nash and Rees, 2017 ) proved that ∇ P 0 is higher than the actual 
threshold pressure, which is consistent with our results given that � in- 
creases as u tends to zero ( Fig. 2 ). 

A model to accurately predict the flow of yield stress and Carreau 
fluids through rough-walled fractures by using �N = 1 was presented and 
experimentally validated in a previous work ( Rodríguez de Castro and 
Radilla, 2017b ). It is reminded here that �N is a tortuosity-related factor, 
so media with different tortuosity may lead to different values of �N . 
Indeed, the effective average pore throat radius �̄ ��� , which takes into 

account the tortuosity of the medium, can be defined as ̄� ��� = 

√ 
8 �� 

� 
= 

�̄ 
√

� = 
�̄ 

�� 
with �� = 

1 √
� 
and T being the tortuosity factor ( Christopher 

and Middleman, 1965; Chaveteau, 1982 ). Given that the tortuosity of 

the flow paths in a packed bed is higher than in a fracture, a lower value 
of �N is expected for packed beds. 

In the case porous media with more complex pore size distributions, 
the flow is highly conditioned by the narrowest flow paths at low flow 

rates and the representative pore section should be smaller than �̄ . In 
this regard, the full set of equations presented in Section 2.2 should be 
reconsidered as the current method is not able to capture the influence 
of pore size distribution. Nevertheless, the use of the present method 
with more complex porous media should still be useful to predict the 
relationships between ∇ P and u with higher accuracy than the existing 
methods which use a constant viscosity value. 

The existence of yield stress was challenged by Barnes and Wal- 
ters (1985) and has been discussed for more than 30 years. As ex- 
plained by Møller et al. (2009) , the supporters of the existence of yield 
stress commonly argue that the viscosity increases very sharply in some 
materials as the stress decreases towards the yield stress. However, 
other researchers claim that only a finite and constant viscosity (New- 
tonian plateau of viscosity) is observed below a certain stress. In par- 
ticular, Barnes and Walters (1985) used stress-controlled rheometers 
to show that at low enough shear rates, viscosity reaches a Newto- 
nian plateau for Carbopol and other fluids which had traditionally been 
considered to have a yield stress. They argued that any material flows 
providing enough observation time and sufficiently sensitive measur- 
ing equipment. In stark contrast with Barnes and Walters (1985) and 
Møller et al. (2009) experimentally showed that such Newtonian plateau 
is the consequence of non-steady-state measurements. They demon- 
strated that for stresses below the yield stress, viscosity is “a priori ”
unbounded and increases continuously, though slowly, if enough time 
is allowed. They effectively observed an increase in viscosity even after 
100 s. In other words, they found that viscosity is time dependent and 
tends to infinity below the yield stress. In the case of the present xan- 
than gum solutions, the evolution of viscosity over time was measured 
for 1000 s under a shear stress of 0.5 Pa (below the yield stress) using 
a rheometer equipped with cone/plate geometry. The results are pro- 
vided as supplementary material (Fig. S2), showing that viscosity does 
not attain a constant value and continues to increase after that time. 

One may wonder whether the proposed procedure is simpler than 
performing a numerical solution to the actual flow equations, without 
invoking a bundle-of-capillaries approximation. In this sense, it should 
be highlighted that performing a numerical solution to the actual flow 

equations would imply using the size distribution of the flow paths as 
an input for the model, which is rarely available in real applications. It 
is reminded that the objective of this work is to present a simple method 
to predict the pressure drop for the flow of yield stress fluids through 
packed beds. Therefore, using hardly accessible inputs as needed to per- 
form a numerical solution to the actual flow equations is not a valid 
approach. 

It is noted that in our experiments with yield stress fluids, the to- 
tal pressure drop through the porous media was successfully predicted 
from the value of K obtained from water injection without any signif- 
icant deviation. Therefore, similarly to the case of previous flow ex- 
periments with shear-thinning fluids without yield stress ( Rodríguez de 
Castro and Radilla, 2017a ), no appreciabe effect of elongational viscos- 
ity has been observed in the present work. Also, wall-effect issue during 
shear-thinning creeping flow in packed beds was previously addressed 
in the literature. On this subject, Rao and Chhabra (1993) studied the 
effects of column walls and particle size distribution on the flow rate- 
pressure drop relationship, proposing a wall correction method and con- 
firming the applicability of the mean hydraulic radius of the particles to 
characterize a bed of mixed size spheres. The latter authors showed that 
wall-effect is less significant in the case of shear-thinning fluids than 
in the Newtonian case. In the present experiments, the porosity of all 
packed beads is 0.35 ± 0.01 and the experimentally measured perme- 
ability is very close to Kozeny-Carman prediction for the largest beads 
(3.6% difference). Therefore, there is no evidence of significant wall- 
effect affecting pressure drop vs. flow rate relationship. 
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6. Summary and conclusions 

A simple approach to extend Darcy’s law to the flow of yield stress 
fluids through packed beds has been presented in this work. This method 
takes into account the non-proportional relationship between the appar- 
ent shear rate in the porous medium �̇�� and average pore velocity u . 
Only the porosity � and the permeability K of the porous medium (ex- 
clusively for high flow rates) are used as inputs of the method, together 
with the Herschel-Bulkley parameters of the fluid ( �0 , a, n ). 

The following procedure to predict ∇ P as a function of u is proposed: 

(1) Determine the shear-rheology parameters of the fluid using a 
rheometer: ( �0 , a, n ). 

(2) Measure the porosity � of the packed beds, e.g., from difference in 
mass before and after saturation with water. Note that the usual 
values are close to � ∼ 35%. 

(3) Measure K from Newtonian-flow experiments. Alternatively, K 
can be estimated from Kozeny-Carman equation ( Eq. (4) ) or de- 
termined by other techniques (e.g., x-ray tomography). However, 
the cited methods provide K estimates with very different accu- 
racy, which can be roughly estimated to ∼5% for experimental 
assessment, ∼10% for Kozeny-Carman and ∼20% for tomogra- 
phy. 

(4) Calculate the values of �( u ): 
4.1) When low and moderate values of u are involved, solve the 

following differential equation ( Eq. (13) ) to obtain �( u ): 
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A value of �N = 0.68 is proposed, based on the results of the 
present experiments and previous theoretical works. 

When only high values of u are involved 
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) 

, 

use a constant value � = α∗ = 
�� 
3 
( 2 + 

1 
� 
) . 

4.2) Use Eq. (8) to compute �eq as a function of u, � , K , �0 , a and 
n : 
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(5) Use Eq. (14) to calculate ∇ P as a function of u : 
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2 . 

Flow experiments of yield stress fluids covering a wide range of u 
were performed in order to assess the accuracy of the predictions ob- 
tained using the proposed method, showing good agreement between 
model and experiments and negligible inertial effects within the ex- 
plored range of u . Consequently, Darcy’s law provides accurate u- ∇ P 
predictions in contrast to the case of less concentrated solutions with 
no yield stress in which inertial effects were significant ( Rodríguez de 
Castro and Radilla, 2017a ). 

As an important industrial application, the extended Darcy’s law can 
be included in computational studies of large-scale non-Newtonian flow 

in unconsolidated porous media. The conclusions of this work have now 

to be assessed using real granular media. Also, future numerical studies 
should be performed in order to provide deeper insight into the physical 
mechanisms governing the non-proportional relationship between �̇�� 

and u . 
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