Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierMechanics surfaces and materials processing [MSMP]
dc.contributor.authorRODRÍGUEZ DE CASTRO, Antonio
hal.structure.identifierUniversity of Waterloo [Waterloo]
dc.contributor.authorAGNAOU, Mehrez
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorAHMADI-SÉNICHAULT, Azita
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorOMARI, Abdelaziz
dc.date.accessioned2021-09-30T16:19:57Z
dc.date.available2021-09-30T16:19:57Z
dc.date.issued2020-02-01
dc.identifier.issn0098-1354en_US
dc.identifier.uriorcid:0000-0002-6102-6744:10.1016/j.compchemeng.2019.106662
dc.identifier.urioai:crossref.org:10.1016/j.compchemeng.2019.106662
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112500
dc.description.abstractEnMercury Intrusion Porosimetry (MIP) is still today the reference porosimetry technique despite its envi- ronmental health and safety concerns. As a safe alternative, the Yield Stress fluids Method (YSM) consists in computing the Pore Size Distribution (PSD) of a given material from the pressure drop vs. flow rate measurements during injection of a yield stress fluid. However, the question arises whether the PSDs provided by YSM are representative of the actual pore dimensions. To answer this question, three nu- merical methods to obtain the PSD from digital images are proposed and compared in the present work. First, direct numerical simulations of YSM tests are performed in the considered media. Then, realistic PSDs are extracted from the images by using pore Network Modelling (NM). Furthermore, the obtained networks are also used to simulate MIP tests. The quantitative numerical results allow the evaluation of the relevance of YSM as an alternative to toxic MIP.
dc.language.isoENen_US
dc.sourceorcid
dc.sourcecrossref
dc.title.enNumerical porosimetry: Evaluation and comparison of yield stress fluids method, mercury intrusion porosimetry and pore network modelling approaches
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.compchemeng.2019.106662en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
bordeaux.journalComputers & Chemical Engineeringen_US
bordeaux.page106662en_US
bordeaux.volume133en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-02509698
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computers%20&%20Chemical%20Engineering&rft.date=2020-02-01&rft.volume=133&rft.spage=106662&rft.epage=106662&rft.eissn=0098-1354&rft.issn=0098-1354&rft.au=RODR%C3%8DGUEZ%20DE%20CASTRO,%20Antonio&AGNAOU,%20Mehrez&AHMADI-S%C3%89NICHAULT,%20Azita&OMARI,%20Abdelaziz&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record