Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDEVAUX, Floriane
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLI, Xuesong
dc.contributor.authorSLUYSMANS, Damien
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorMAURIZOT, Victor
dc.contributor.authorBAKALIS, Evangelos
dc.contributor.authorZERBETTO, Francesco
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorHUC, Ivan
dc.contributor.authorDUWEZ, Anne-Sophie
dc.date.accessioned2021-07-02T06:40:44Z
dc.date.available2021-07-02T06:40:44Z
dc.date.issued2021-05
dc.identifier.issn2451-9294en_US
dc.identifier.otherhttps://doi.org/10.1016/j.chempr.2021.02.030en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/94958
dc.description.abstractEnBecause of proteins’ many degrees of conformational freedom, programming protein folding dynamics, overall elasticity, and motor functions remains an elusive objective. Instead, smaller and simpler objects, such as synthetic foldamers, may be amenable to design. However, little is known about their mechanical performance. Here, we show that reducing molecular size may not compromise mechanical properties. We report that helical aromatic oligoamides as small as 1 nm possess outstanding elasticity and outperform most natural helices. Using single-molecule force spectroscopy, we characterize their folding trajectories and intermediate states. We show that they cooperatively and reversibly unwind at high forces. They extend up to 3.8 times their original length and rewind against considerable forces on a timescale of 10 μs. Pulling and relaxing cycles follow the same trace up to a very high loading rate, indicating that the mechanical energy accumulated during the stretching does not dissipate and is immediately reusable.
dc.language.isoENen_US
dc.subject.enfoldamers
dc.subject.enhelical folding
dc.subject.enAFM force spectroscopy
dc.subject.ensingle-molecule mechanics
dc.subject.enelasticity
dc.subject.enreversible processes
dc.subject.enmolecular machines with tailored properties
dc.title.enSingle-molecule mechanics of synthetic aromatic amide helices: Ultrafast and robust non-dissipative winding
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.chempr.2021.02.030en_US
dc.subject.halChimie/Matériauxen_US
dc.description.sponsorshipEuropeBeyond Biopolymers: Protein-Sized Aromatic Amide Functional Foldamersen_US
dc.description.sponsorshipEuropeErasmus Mundus - International Doctoral School in Functional Materialsen_US
bordeaux.journalChemen_US
bordeaux.page1333-1346en_US
bordeaux.volume7en_US
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN) - UMR 5248en_US
bordeaux.issue5en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03276336
hal.version1
hal.date.transferred2021-07-02T06:40:48Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chem&rft.date=2021-05&rft.volume=7&rft.issue=5&rft.spage=1333-1346&rft.epage=1333-1346&rft.eissn=2451-9294&rft.issn=2451-9294&rft.au=DEVAUX,%20Floriane&LI,%20Xuesong&SLUYSMANS,%20Damien&MAURIZOT,%20Victor&BAKALIS,%20Evangelos&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée