Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCALTAGIRONE, Jean-Paul
dc.date.accessioned2021-06-18T10:03:46Z
dc.date.available2021-06-18T10:03:46Z
dc.date.issued2021
dc.identifier.issn0021-9991en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/79202
dc.description.abstractEnDiscrete mechanics is presented as an alternative to the equations of fluid mechanics, in particular to the Navier-Stokes equation. The derivation of the discrete equation of motion is built from the intuitions of Galileo, the principles of Galilean equivalence and relativity. Other more recent concepts such as the equivalence between mass and energy and the Helmholtz-Hodge decomposition complete the formal framework used to write a fundamental law of motion such as the conservation of accelerations, the intrinsic acceleration of the material medium, and the sum of the accelerations applied to it. The two scalar and vector potentials of the acceleration resulting from the decomposition into two contributions, to curl-free and to divergence-free, represent the energies per unit of mass of compression and shear. The solutions obtained by the incompressible Navier-Stokes equation and the discrete equation of motion are the same, with constant physical properties. This new formulation of the equation of motion makes it possible to significantly modify the treatment of surface discontinuities, thanks to the intrinsic properties established from the outset for a discrete geometrical description directly linked to the decomposition of acceleration. The treatment of the jump conditions of density, viscosity and capillary pressure is explained in order to understand the two-phase flows. The choice of the examples retained, mainly of the exact solutions of the continuous equations, serves to show that the treatment of the conditions of jumps does not affect the precision of the method of resolution.
dc.language.isoENen_US
dc.subject.enDiscrete Mechanics
dc.subject.enHodge-Helmholtz Decomposition
dc.subject.enNavier-Stokes equation
dc.subject.enTwo-PhaseFlows
dc.subject.enMimetic Methods
dc.subject.enDiscrete Exterior Calculus
dc.title.enApplication of discrete mechanics model to jump conditions in two-phase flows
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jcp.2021.110151en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
dc.identifier.arxiv2101.10216en_US
bordeaux.journalJournal of Computational Physicsen_US
bordeaux.pagep. 34en_US
bordeaux.volume432en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03264526
hal.version1
hal.date.transferred2021-06-18T10:03:49Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2021&rft.volume=432&rft.spage=p.%2034&rft.epage=p.%2034&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=CALTAGIRONE,%20Jean-Paul&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée