Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitute of Crystallography FSRC “Crystallography and Photonics” Russian Academy of Sciences
dc.contributor.authorDARINSKII, Alexander
dc.contributor.authorSHUVALOV, Alexander
IDREF: 168470004
dc.date.accessioned2021-06-14T13:43:54Z
dc.date.available2021-06-14T13:43:54Z
dc.date.issued2021
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/79125
dc.description.abstractEnThe paper investigates the existence of interfacial (Stoneley-type) acoustic waves localised at the internal boundary between two semi-infinite superlattices which are adjoined with each other to form one-dimensional phononic bicrystal. Each superlattice is a periodic sequence of perfectly bonded homogeneous and/or functionally graded layers of general anisotropy. Given any asymmetric arrangement of unit cells (periods) of superlattices, it is found that the maximum number of interfacial waves, which can emerge at a fixed tangential wavenumber for the frequency varying within a stopband, is three for the lowest stopband and six for any upper stopband. Moreover, we show that this number of three or six waves in the lowest or upper stopband, is actually the maximum for the number of waves occurring per stopband in a given bicrystal plus their number in the “complementary” bicrystal, which is obtained by swapping upper and lower superlattices of the initial one (so that both bicrystals have the same band structure). An example is provided demonstrating attainability of this upper bound, i.e. the existence of six interfacial waves in a stopband. The results obtained under no assumptions regarding the material anisotropy are also specified to the case of monoclinic symmetry leading to acoustic mode decoupling.
dc.language.isoENen_US
dc.subject.enInterfacial acoustic waves
dc.subject.enPeriodic superlattice
dc.subject.enElastic anisotropy
dc.subject.enTransfer matrix
dc.subject.enImpedance
dc.title.enStoneley-type waves in anisotropic periodic superlattices
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.ultras.2020.106237en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
bordeaux.journalUltrasonicsen_US
bordeaux.pagep. 106237en_US
bordeaux.volumeVol. 109en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.institutionINRAE
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03381745
hal.exportfalse
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ultrasonics&rft.date=2021&rft.volume=Vol.%20109&rft.spage=p.%20106237&rft.epage=p.%20106237&rft.au=DARINSKII,%20Alexander&SHUVALOV,%20Alexander&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée