Afficher la notice abrégée

hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorMAGNAN, Laure
hal.structure.identifierInstitut Bergonié [Bordeaux]
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorLABRUNIE, Gaelle
hal.structure.identifierBordeaux Imaging Center [BIC]
dc.contributor.authorMARAIS, Sebastien
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorREY, Sylvie
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorDUSSERRE, Nathalie
hal.structure.identifierPlateforme Protéome [Bordeaux]
dc.contributor.authorBONNEU, Marc
hal.structure.identifierBordeaux Imaging Center [BIC]
dc.contributor.authorLACOMME, Sabrina
hal.structure.identifierBordeaux Imaging Center [BIC]
dc.contributor.authorGONTIER, Etienne
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorL'HEUREUX, Nicolas
dc.date.accessioned2021-06-10T07:03:41Z
dc.date.available2021-06-10T07:03:41Z
dc.date.issued2018-12
dc.identifier.issn1742-7061
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78929
dc.description.abstractEnWe have previously shown that the Cell-Assembled extracellular Matrix (CAM) synthesized by normal, human, skin fibroblasts in vitro can be assembled in a completely biological vascular graft that was successfully tested in the clinic. The goal of this study was to perform a detailed analysis of the composition and the organization of this truly bio-material. In addition, we investigated whether the devitalization process (dehydration) used to store the CAM, and thus, make the material available "off-the-shelf," could negatively affect its organization and mechanical properties. We demonstrated that neither the thickness nor the mechanical strength of CAM sheets were significantly changed by the dehydration/freezing/rehydration cycle. The identification of over 50 extracellular matrix proteins highlighted the complex composition of the CAM. Histology showed intense collagen and glycosaminoglycan staining throughout the CAM sheet. The distribution of collagen I, collagen VI, thrombospondin-1, fibronectin-1, fibrillin-1, biglycan, decorin, lumican and versican showed various patterns that were not affected by the devitalization process. Transmission electron microscopy analysis revealed that the remarkably dense collagen network was oriented in the plane of the sheet and that neither fibril density nor diameter was changed by devitalization. Second harmonic generation microscopy revealed an intricate, multi-scale, native-like collagen fiber orientation. In conclusion, this bio-material displayed many tissue-like properties that could support normal cell-ECM interactions and allow implantation without triggering degradative responses from the host's innate immune system. This is consistent with its success in vivo. In addition, the CAM can be devitalized without affecting its mechanical or unique biological architecture. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) defines biological function and mechanical properties of tissues and organs. A number of promising tissue engineering approaches have used processed ECM from cadaver/animal tissues or cell-assembled ECM in vitro combined with scaffolds. We have shown the clinical potential of a scaffold-free approach based on an entirely biological material produced by human cells in culture without chemical processing. Here, we perform a comprehensive analysis of the properties of what can truly be called a bio-material. We also demonstrate that this material can be stored dried without losing its remarkable biological architecture.
dc.language.isoen
dc.publisherElsevier
dc.subject.enCell-Assembled extracellular Matrix
dc.subject.enCollagen
dc.subject.enEntirely biological
dc.subject.enMass spectrometry
dc.subject.enScaffold-free
dc.subject.enTissue engineering
dc.title.enCharacterization of a Cell-Assembled extracellular Matrix and the effect of the devitalization process
dc.typeArticle de revue
dc.identifier.doi10.1016/j.actbio.2018.10.006
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalActa Biomaterialia
bordeaux.page56-67
bordeaux.volume82
bordeaux.hal.laboratoriesBioingénierie Tissulaire (BioTis) - U1026*
bordeaux.institutionCNRS
bordeaux.institutionINSERM
bordeaux.institutionCHU de Bordeaux
bordeaux.institutionInstitut Bergonié
bordeaux.peerReviewedoui
hal.identifierinserm-02870985
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//inserm-02870985v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Biomaterialia&rft.date=2018-12&rft.volume=82&rft.spage=56-67&rft.epage=56-67&rft.eissn=1742-7061&rft.issn=1742-7061&rft.au=MAGNAN,%20Laure&LABRUNIE,%20Gaelle&MARAIS,%20Sebastien&REY,%20Sylvie&DUSSERRE,%20Nathalie&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée