Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorCLAIRON, Quentin
dc.date.accessioned2021-05-21T08:29:05Z
dc.date.available2021-05-21T08:29:05Z
dc.date.issued2021-01
dc.identifier.issn0378-3758en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78597
dc.description.abstractEnWe present a parameter estimation method in Ordinary Differential Equation (ODE) models.Due to complex relationships between parameters and statesthe use of standard techniquessuch as nonlinear least squares can lead to the presence of poorly identifiable parameters.Moreover, ODEs are generally approximations of the true process and the influence of mis-specification on inference is often neglected. Methods based on control theory have emergedto regularize the ill posed problem of parameter estimationin this context. However, they arecomputationally intensive and rely on a nonparametric state estimator known to be biased inthe sparse sample case. In this paper, we construct criteriabased on discrete control theorywhich are computationally efficient and bypass the presmoothing step of signal estimationwhile retaining the benefits of control theory for estimation. We describe how the estimationproblem can be turned into a control one and present the numerical methods used to solve it.We show convergence of our estimator in the parametric and well-specified case. For smallsample sizes, numerical experiments with models containing poorly identifiable parametersand with various sources of model misspecification demonstrate the acurracy of our method.We finally test our approach on a real data example.
dc.language.isoENen_US
dc.subject.enOrdinary differential equation
dc.subject.enDiscrete optimal control
dc.subject.enParametric estima-tion
dc.subject.enSemi parametric estimation
dc.subject.enModel uncertainty
dc.title.enA regularization method for the parameter estimation problem in ordinary differential equations via discrete optimal control theory
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jspi.2020.04.007en_US
dc.subject.halInformatique [cs]/Systèmes et contrôle [cs.SY]en_US
dc.subject.halMathématiques [math]/Statistiques [math.ST]en_US
dc.subject.halInformatique [cs]/Bio-informatique [q-bio.QM]en_US
bordeaux.journalJournal of Statistical Planning and Inferenceen_US
bordeaux.page1-19en_US
bordeaux.volume210en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03152255
hal.version1
hal.exportfalse
workflow.import.sourcehal
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Statistical%20Planning%20and%20Inference&rft.date=2021-01&rft.volume=210&rft.spage=1-19&rft.epage=1-19&rft.eissn=0378-3758&rft.issn=0378-3758&rft.au=CLAIRON,%20Quentin&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record