Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorANDRE, Damien
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorIORDANOFF, Ivan
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorCHARLES, Jean Luc
IDREF: 145803937
hal.structure.identifierCentre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.authorNEAUPORT, Jérôme
dc.date.accessioned2021-05-14T10:04:21Z
dc.date.available2021-05-14T10:04:21Z
dc.date.issued2012-01-02
dc.identifier.issn0045-7825
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78475
dc.description.abstractEnThe mechanical behavior of materials is usually simulated by the continuous mechanics approach. However, simulation of non-continuous phenomena like multi fracturing is not well adapted to a continuous description. In this case, the discrete element method (DEM) is a good alternative because it naturally takes into account discontinuities. Many researchers have shown interest in this approach for wear and fracture simulation. The problem is that, while DEM is well adapted to simulate discontinuities, it is not suitable to simulate continuous behavior. In problems of wear or fracture, material is composed of continuous parts and discontinuous interfaces. The aim of the present work is to improve the ability of DEM to simulate the continuous part of the material using cohesive bond model. Continuous mechanics laws cannot be used directly within a DEM formulation. A second difficulty is that the volume between the discrete elements creates an artificial void inside thematerial. This paper proposes a methodology that tackles these theoretical difficulties and simulates, using a discrete element model, any material defined by a Young's modulus, Poisson's ratio and density, to fit the static and dynamic mechanical behavior of the material. The chosen cohesive beam model is shown to be robust concerning the influence of the discrete element sizes. This method is applied to a material which can be considered as perfectly elastic: fused silica.
dc.language.isoen
dc.publisherElsevier
dc.subject.enDiscrete element method
dc.subject.enDEM
dc.subject.enCalibration
dc.subject.enElastic
dc.subject.enDynamic
dc.subject.enFused silica
dc.title.enDiscrete element method to simulate continuous material by using the cohesive beam model
dc.typeArticle de revue
dc.identifier.doi10.1016/j.cma.2011.12.002
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
bordeaux.journalComputer Methods in Applied Mechanics and Engineering
bordeaux.pagep.113-125
bordeaux.volume213
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-00748669
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00748669v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computer%20Methods%20in%20Applied%20Mechanics%20and%20Engineering&rft.date=2012-01-02&rft.volume=213&rft.spage=p.113-125&rft.epage=p.113-125&rft.eissn=0045-7825&rft.issn=0045-7825&rft.au=ANDRE,%20Damien&IORDANOFF,%20Ivan&CHARLES,%20Jean%20Luc&NEAUPORT,%20J%C3%A9r%C3%B4me&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée