Fast discrete Helmholtz-Hodge decompositions in bounded domains
hal.structure.identifier | analyse appliquée | |
dc.contributor.author | ANGOT, Philippe | |
hal.structure.identifier | Transferts, écoulements, fluides, énergétique [TREFLE] | |
dc.contributor.author | CALTAGIRONE, Jean-Paul | |
hal.structure.identifier | Équipe EDP et Physique Mathématique | |
dc.contributor.author | FABRIE, Pierre | |
dc.date.accessioned | 2021-05-14T10:04:18Z | |
dc.date.available | 2021-05-14T10:04:18Z | |
dc.date.created | 2012-01-31 | |
dc.date.issued | 2013-04 | |
dc.identifier.issn | 0893-9659 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/78471 | |
dc.description.abstractEn | We present new fast {\em discrete Helmholtz-Hodge decomposition (DHHD)} methods to efficiently compute at the order $\cO(\eps)$ the divergen\-ce-free (solenoidal) or curl-free (irrotational) components and their associated potentials of a given $\mathbf{L}^2(\Omega)$ vector field in a bounded domain. The solution algorithms solve suitable penalized boundary-value elliptic problems involving either the $\Grad(\Div)$ operator in the {\em vector penalty-projection (VPP)} or the $\Rot(\Rot)$ operator in the {\em rotational penalty-projection (RPP)} with {\em adapted right-hand sides} of the same form. Therefore, they are extremely well-conditioned, fast and cheap avoiding to solve the usual Poisson problems for the scalar or vector potentials. Indeed, each (VPP) or (RPP) problem only requires two conjugate-gradient iterations whatever the mesh size, when the penalty parameter $\varepsilon$ is sufficiently small. We state optimal error estimates vanishing as $\mathcal{O}(\varepsilon)$ with a penalty parameter $\varepsilon$ as small as desired up to machine precision, e.g. $\varepsilon=10^{-14}$. Some numerical results confirm the efficiency of the proposed (DHHD) methods, very useful to solve problems in electromagnetism or fluid dynamics. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Helmholtz-Hodge decompositions | |
dc.subject.en | Rotational penalty-projection | |
dc.subject.en | Vector penalty-projection | |
dc.subject.en | Penalty method | |
dc.subject.en | Error analysis | |
dc.subject.en | PDE's with adapted right-hand sides | |
dc.title.en | Fast discrete Helmholtz-Hodge decompositions in bounded domains | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.aml.2012.11.006 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.subject.hal | Physique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn] | |
dc.subject.hal | Physique [physics]/Physique [physics]/Physique Numérique [physics.comp-ph] | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Electromagnétisme | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
bordeaux.journal | Applied Mathematics Letters | |
bordeaux.page | 445--451 | |
bordeaux.volume | 26 | |
bordeaux.hal.laboratories | Institut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.institution | INRAE | |
bordeaux.institution | Arts et Métiers | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00756959 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00756959v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Mathematics%20Letters&rft.date=2013-04&rft.volume=26&rft.issue=4&rft.spage=445--451&rft.epage=445--451&rft.eissn=0893-9659&rft.issn=0893-9659&rft.au=ANGOT,%20Philippe&CALTAGIRONE,%20Jean-Paul&FABRIE,%20Pierre&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |