Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorANDRÉ, Damien
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorJEBAHI, Mohamed
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorIORDANOFF, Ivan
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorCHARLES, Jean Luc
IDREF: 145803937
hal.structure.identifierCentre d'études scientifiques et techniques d'Aquitaine [CESTA]
dc.contributor.authorNÉAUPORT, Jérôme
dc.date.accessioned2021-05-14T10:01:40Z
dc.date.available2021-05-14T10:01:40Z
dc.date.issued2013-10
dc.identifier.issn0045-7825
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78241
dc.description.abstractEnThe mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, noncontinuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This study continues previous work in which a DEM model was developed to quantitatively simulate an elastic material with the cohesive beam bond model. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. The simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material.
dc.language.isoen
dc.publisherElsevier
dc.title.enUsing the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des matériaux [physics.class-ph]
bordeaux.journalComputer Methods in Applied Mechanics and Engineering
bordeaux.page136-147
bordeaux.volume265
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01006916
hal.version1
dc.subject.itDiscrete Element Method
dc.subject.itDEM
dc.subject.itcalibration
dc.subject.itsilica
dc.subject.itbrittle
dc.subject.itcrack
dc.subject.itindentation
dc.subject.ithertzian cone
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01006916v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computer%20Methods%20in%20Applied%20Mechanics%20and%20Engineering&rft.date=2013-10&rft.volume=265&rft.spage=136-147&rft.epage=136-147&rft.eissn=0045-7825&rft.issn=0045-7825&rft.au=ANDR%C3%89,%20Damien&JEBAHI,%20Mohamed&IORDANOFF,%20Ivan&CHARLES,%20Jean%20Luc&N%C3%89AUPORT,%20J%C3%A9r%C3%B4me&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée