Afficher la notice abrégée

hal.structure.identifierInstituto Tecnologico de Aragon [ITA]
dc.contributor.authorBERGAMASCO, Luca
hal.structure.identifierInstituto Tecnologico de Aragon [ITA]
dc.contributor.authorIZQUIERDO, Salvador
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorAMMAR, Amine
dc.date.accessioned2021-05-14T10:00:33Z
dc.date.available2021-05-14T10:00:33Z
dc.date.issued2013-11
dc.identifier.issn0377-0257
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78139
dc.description.abstractEnMicro-macro simulations of polymeric solutions rely on the coupling between macroscopic conservation equations for the fluid flow and stochastic differential equations for kinetic viscoelastic models at the microscopic scale. In the present work we introduce a novel micro-macro numerical approach, where the macroscopic equations are solved by a finite-volume method and the microscopic equation by a lattice-Boltzmann one. The kinetic model is given by molecular analogy with a finitely extensible non-linear elastic (FENE) dumbbell and is deterministically solved through an equivalent Fokker-Planck equation. The key features of the proposed approach are: (i) a proper scaling and coupling between the micro lattice-Boltzmann solution and the macro finite-volume one; (ii) a fast microscopic solver thanks to an implementation for Graphic Processing Unit (GPU) and the local adaptivity of the lattice-Boltzmann mesh; (iii) an operator-splitting algorithm for the convection of the macroscopic viscoelastic stresses instead of the whole probability density of the dumbbell configuration. This latter feature allows the application of the proposed method to non-homogeneous flow conditions with low memory-storage requirements. The model optimization is achieved through an extensive analysis of the lattice-Boltzmann solution, which finally provides control on the numerical error and on the computational time. The resulting micro-macro model is validated against the benchmark problem of a viscoelastic flow past a confined cylinder and the results obtained confirm the validity of the approach.
dc.language.isoen
dc.publisherElsevier
dc.title.enDirect numerical simulation of complex viscoelastic flows via fast lattice-Boltzmann solution of the Fokker-Planck equation
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jnnfm.2013.07.004
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
bordeaux.journalJournal of Non-Newtonian Fluid Mechanics
bordeaux.page29-38
bordeaux.volume201
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01061178
hal.version1
dc.subject.itMulti-scale
dc.subject.itFinite volume method
dc.subject.itLattice Boltzmann method
dc.subject.itFENE kinetic model
dc.subject.itGPU computing
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01061178v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Non-Newtonian%20Fluid%20Mechanics&rft.date=2013-11&rft.volume=201&rft.spage=29-38&rft.epage=29-38&rft.eissn=0377-0257&rft.issn=0377-0257&rft.au=BERGAMASCO,%20Luca&IZQUIERDO,%20Salvador&AMMAR,%20Amine&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée