Afficher la notice abrégée

hal.structure.identifierLa Rochelle Université [ULR]
dc.contributor.authorDUMON, Antoine
hal.structure.identifierLa Rochelle Université [ULR]
dc.contributor.authorALLERY, Cyrille
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorAMMAR, Amine
dc.date.accessioned2021-05-14T10:00:18Z
dc.date.available2021-05-14T10:00:18Z
dc.date.issued2013-04-01
dc.identifier.issn0096-3003
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78117
dc.description.abstractEnProper Generalized Decomposition (PGD) is a method which consists in looking for the solution to a problem in a separate form. This approach has been increasingly used over the last few years to solve mathematical problems. The originality of this work consists in the association of PGD with a spectral collocation method to solve transfer equations as well as Navier-Stokes equations. In the first stage, the PGD method and its association with spectral discretization is detailed. This approach was tested for several problems: the Poisson equation, the Darcy problem, Navier-Stokes equations (the Taylor Green problem and the lid-driven cavity). In the Navier-Stokes problems, the coupling between velocity and pressure was performed using a fractional step scheme and a PN--PN-2 discretization. For all problems considered, the results from PGD simulations were compared with those obtained by a standard solver and/or with the results found in the literature. The simulations performed showed that PGD is as accurate as standard solvers. PGD preserves the spectral behavior of the errors in velocity and pressure when the time step or the space step decreases. Moreover, for a given number of discretization nodes, PGD is faster than the standard solvers.
dc.language.isoen
dc.publisherElsevier
dc.subject.enSpectral discretization
dc.subject.enIncompressible flow
dc.subject.enReduced order model
dc.subject.enProper generalized decomposition
dc.title.enProper Generalized Decomposition method for incompressible Navier-Stokes equations with a spectral discretization
dc.typeArticle de revue
dc.identifier.doi10.1016/j.amc.2013.02.022
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
bordeaux.journalApplied Mathematics and Computation
bordeaux.page8145-8162
bordeaux.volume219
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue15
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01062396
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01062396v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Mathematics%20and%20Computation&rft.date=2013-04-01&rft.volume=219&rft.issue=15&rft.spage=8145-8162&rft.epage=8145-8162&rft.eissn=0096-3003&rft.issn=0096-3003&rft.au=DUMON,%20Antoine&ALLERY,%20Cyrille&AMMAR,%20Amine&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée