Analysis of intrinsic mode functions: A PDE approach
hal.structure.identifier | Institut de Recherche de l'Ecole Navale [IRENAV] | |
dc.contributor.author | DIOP, El Hadji | |
hal.structure.identifier | Institut de Recherche de l'Ecole Navale [IRENAV] | |
dc.contributor.author | ALEXANDRE, Radjesvarane | |
hal.structure.identifier | Institut de Recherche de l'Ecole Navale [IRENAV] | |
dc.contributor.author | BOUDRAA, Abdel-Ouahab | |
dc.date.accessioned | 2021-05-14T09:58:42Z | |
dc.date.available | 2021-05-14T09:58:42Z | |
dc.date.issued | 2010-04 | |
dc.identifier.issn | 1070-9908 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/77968 | |
dc.description | The empirical mode decomposition is a powerful tool for signal processing. Because of its original algorithmic, recent works have contributed to its theoretical framework. Following these works, some mathematical contributions on its comprehension and formalism are provided. In this paper, the so called local mean is computed in such a way that it allows the use of differential calculus on envelopes. This new formulation makes us prove that iterations of the sifting process are well approximated by the resolution of partial differential equations (PDE). Intrinsic mode functions are originally defined in a intuitive way. Herein, a mathematical characterization of modes is given with the proposed PDE based approach. | |
dc.description.abstractEn | The empirical mode decomposition is a powerful tool for signal processing. Because of its original algorithmic, recent works have contributed to its theoretical framework. Following these works, some mathematical contributions on its comprehension and formalism are provided. In this paper, the so called local mean is computed in such a way that it allows the use of differential calculus on envelopes. This new formulation makes us prove that iterations of the sifting process are well approximated by the resolution of partial differential equations (PDE). Intrinsic mode functions are originally defined in a intuitive way. Herein, a mathematical characterization of modes is given with the proposed PDE based approach. | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers | |
dc.subject | EDP | |
dc.subject | mode empirique | |
dc.subject | Décomposition modale empirique | |
dc.subject | Partial differential equations | |
dc.subject | intrinsic mode function | |
dc.subject | Empirical mode decomposition | |
dc.title.en | Analysis of intrinsic mode functions: A PDE approach | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1109/LSP.2009.2038770 | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Traitement du signal et de l'image | |
bordeaux.journal | IEEE Signal Processing Letters | |
bordeaux.page | 398-401 | |
bordeaux.volume | 17 | |
bordeaux.hal.laboratories | Institut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.institution | INRAE | |
bordeaux.institution | Arts et Métiers | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01087092 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01087092v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Signal%20Processing%20Letters&rft.date=2010-04&rft.volume=17&rft.issue=4&rft.spage=398-401&rft.epage=398-401&rft.eissn=1070-9908&rft.issn=1070-9908&rft.au=DIOP,%20El%20Hadji&ALEXANDRE,%20Radjesvarane&BOUDRAA,%20Abdel-Ouahab&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |