Afficher la notice abrégée

hal.structure.identifierUniversity of Michigan [Ann Arbor]
dc.contributor.authorAKCABAY, Deniz Tolga
hal.structure.identifierUniversity of Michigan [Ann Arbor]
dc.contributor.authorCHAE, Eun Jung
hal.structure.identifierUniversity of Michigan [Ann Arbor]
dc.contributor.authorYOUNG, Yin Lu
hal.structure.identifierUniversity of Michigan [Ann Arbor]
hal.structure.identifierÉcole Centrale de Nantes [ECN]
dc.contributor.authorDUCOIN, Antoine
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorASTOLFI, Jacques André
dc.date.accessioned2021-05-14T09:58:39Z
dc.date.available2021-05-14T09:58:39Z
dc.date.issued2014-08
dc.identifier.issn0889-9746
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77962
dc.descriptionThe objective of this work is to investigate the influence of cavity-induced vibrations on the dynamic response and stability of a NACA66 hydrofoil at 8° angle of attack at Re=750 000 via combined experimental measurements and numerical simulations. The rectangular, cantilevered hydrofoil is assumed to be rigid in the chordwise direction, while the spanwise bending and twisting deformations are represented using a two-degrees-of-freedom structural model. The multiphase flow is modeled with an incompressible, unsteady Reynolds Averaged Navier–Stokes solver with the k–ω Shear Stress Transport (SST) turbulence closure model, while the phase evolutions are modeled with a mass-transport equation based cavitation model. The numerical predictions are compared with experimental measurements across a range of cavitation numbers for a rigid and a flexible hydrofoil with the same undeformed geometries. The results showed that foil flexibility can lead to: (1) focusing – locking – of the frequency content of the vibrations to the nearest sub-harmonics of the foil׳s wetted natural frequencies, and (2) broadening of the frequency content of the vibrations in the unstable cavitation regime, where amplifications are observed in the sub-harmonics of the foil natural frequencies. Cavitation was also observed to cause frequency modulation, as the fluid density, and hence fluid induced (inertial, damping, and disturbing) forces fluctuated with unsteady cavitation.
dc.description.abstractEnThe objective of this work is to investigate the influence of cavity-induced vibrations on the dynamic response and stability of a NACA66 hydrofoil at 8° angle of attack at Re=750 000 via combined experimental measurements and numerical simulations. The rectangular, cantilevered hydrofoil is assumed to be rigid in the chordwise direction, while the spanwise bending and twisting deformations are represented using a two-degrees-of-freedom structural model. The multiphase flow is modeled with an incompressible, unsteady Reynolds Averaged Navier–Stokes solver with the k–ω Shear Stress Transport (SST) turbulence closure model, while the phase evolutions are modeled with a mass-transport equation based cavitation model. The numerical predictions are compared with experimental measurements across a range of cavitation numbers for a rigid and a flexible hydrofoil with the same undeformed geometries. The results showed that foil flexibility can lead to: (1) focusing – locking – of the frequency content of the vibrations to the nearest sub-harmonics of the foil׳s wetted natural frequencies, and (2) broadening of the frequency content of the vibrations in the unstable cavitation regime, where amplifications are observed in the sub-harmonics of the foil natural frequencies. Cavitation was also observed to cause frequency modulation, as the fluid density, and hence fluid induced (inertial, damping, and disturbing) forces fluctuated with unsteady cavitation.
dc.language.isoen
dc.publisherElsevier
dc.subject.enCavitation
dc.subject.enFlexible
dc.subject.enFrequency modulation
dc.subject.enHydrofoil
dc.subject.enLock-in
dc.subject.enVibration
dc.title.enCavity induced vibration of flexible hydrofoils
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jfluidstructs.2014.05.007
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des structures [physics.class-ph]
bordeaux.journalJournal of Fluids and Structures
bordeaux.page463–484
bordeaux.volume49
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01087334
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01087334v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluids%20and%20Structures&rft.date=2014-08&rft.volume=49&rft.spage=463%E2%80%93484&rft.epage=463%E2%80%93484&rft.eissn=0889-9746&rft.issn=0889-9746&rft.au=AKCABAY,%20Deniz%20Tolga&CHAE,%20Eun%20Jung&YOUNG,%20Yin%20Lu&DUCOIN,%20Antoine&ASTOLFI,%20Jacques%20Andr%C3%A9&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée