Afficher la notice abrégée

hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorALEXANDRE, Radjesvarane
hal.structure.identifierGraduate School of Human and Environmental Studies
dc.contributor.authorMORIMOTO, Yoshinori
hal.structure.identifierretaite [Mr.]
dc.contributor.authorUKAI, Seiji
hal.structure.identifierLaboratoire de Mathématiques Raphaël Salem [LMRS]
dc.contributor.authorXU, Chao-Jiang
hal.structure.identifierDepartment of mathematics [Pr.]
dc.contributor.authorYANG, Tong
dc.date.accessioned2021-05-14T09:57:57Z
dc.date.available2021-05-14T09:57:57Z
dc.date.created2010-05
dc.date.issued2012
dc.identifier.issn0022-1236
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77913
dc.description.abstractEnIt is known that the singularity in the non-cutoff cross-section of the Boltzmann equation leads to the gain of regularity and a possible gain of weight in the velocity variable. By defining and analyzing a non-isotropic norm which precisely captures the dissipation in the linearized collision operator, we first give a new and precise coercivity estimate for the non-cutoff Boltzmann equation for general physical cross-sections. Then the Cauchy problem for the Boltzmann equation is considered in the framework of small perturbation of an equilibrium state. In this part, for the soft potential case in the sense that there is no positive power gain of weight in the coercivity estimate on the linearized operator, we derive some new functional estimates on the nonlinear collision operator. Together with the coercivity estimates, we prove the global existence of classical solutions for the Boltzmann equation in weighted Sobolev spaces.
dc.language.isoen
dc.publisherElsevier
dc.subject.enSoft potential
dc.subject.enGlobal existence
dc.subject.enNon-isotropic norm
dc.subject.enNon-cutoff cross-sections
dc.subject.enCoercivity estimate
dc.subject.enBoltzmann equation
dc.title.enThe Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jfa.2011.10.007
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalJournal of Functional Analysis
bordeaux.page915-1010
bordeaux.volume262
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01116723
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01116723v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Functional%20Analysis&rft.date=2012&rft.volume=262&rft.spage=915-1010&rft.epage=915-1010&rft.eissn=0022-1236&rft.issn=0022-1236&rft.au=ALEXANDRE,%20Radjesvarane&MORIMOTO,%20Yoshinori&UKAI,%20Seiji&XU,%20Chao-Jiang&YANG,%20Tong&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée