Two-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model
hal.structure.identifier | Transferts, écoulements, fluides, énergétique [TREFLE] | |
dc.contributor.author | LASSEUX, Didier
IDREF: 131294474 | |
hal.structure.identifier | Transferts, écoulements, fluides, énergétique [TREFLE] | |
dc.contributor.author | AHMADI-SENICHAULT, Azita | |
dc.contributor.author | ABBASIAN ARANI, Ali Akbar | |
dc.date.accessioned | 2021-05-14T09:56:30Z | |
dc.date.available | 2021-05-14T09:56:30Z | |
dc.date.issued | 2008-05 | |
dc.identifier.issn | 0169-3913 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/77794 | |
dc.description.abstractEn | The purpose of this article is to derive a macroscopic model for a certain classof inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ , the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are onthe length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient ∇ pα α to the filtration or Darcy velocity vα in a coupled nonlinear form explicitly given by : (equations)In these equations, Fαα and Fακ are the inertial and coupling inertial correction tensors thatare functions of flow-rates. The dominant and coupling permeability tensors K∗αα and K∗ακand the permeability and viscous drag tensors Kα and Kακ are intrinsic and are those definedin the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseuxet al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determinedfrom closure problems that are to be solved using a spatially periodic model of a porousmedium. The practical procedure to compute these tensors is provided. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | Homogeneous porous media | |
dc.subject.en | Two-phase flow | |
dc.subject.en | Inertial or non-Darcian flow | |
dc.subject.en | Up-scaling | |
dc.subject.en | Volume averaging | |
dc.title.en | Two-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s11242-008-9231-y | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph] | |
bordeaux.journal | Transport in Porous Media | |
bordeaux.page | 371-400 | |
bordeaux.volume | 75 | |
bordeaux.hal.laboratories | Institut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.institution | INRAE | |
bordeaux.institution | Arts et Métiers | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01174658 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01174658v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Transport%20in%20Porous%20Media&rft.date=2008-05&rft.volume=75&rft.issue=3&rft.spage=371-400&rft.epage=371-400&rft.eissn=0169-3913&rft.issn=0169-3913&rft.au=LASSEUX,%20Didier&AHMADI-SENICHAULT,%20Azita&ABBASIAN%20ARANI,%20Ali%20Akbar&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |