Afficher la notice abrégée

hal.structure.identifierTransferts, écoulements, fluides, énergétique [TREFLE]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
hal.structure.identifierTransferts, écoulements, fluides, énergétique [TREFLE]
dc.contributor.authorAHMADI-SENICHAULT, Azita
dc.contributor.authorABBASIAN ARANI, Ali Akbar
dc.date.accessioned2021-05-14T09:56:30Z
dc.date.available2021-05-14T09:56:30Z
dc.date.issued2008-05
dc.identifier.issn0169-3913
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77794
dc.description.abstractEnThe purpose of this article is to derive a macroscopic model for a certain classof inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ , the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are onthe length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient ∇ pα α to the filtration or Darcy velocity vα in a coupled nonlinear form explicitly given by : (equations)In these equations, Fαα and Fακ are the inertial and coupling inertial correction tensors thatare functions of flow-rates. The dominant and coupling permeability tensors K∗αα and K∗ακand the permeability and viscous drag tensors Kα and Kακ are intrinsic and are those definedin the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseuxet al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determinedfrom closure problems that are to be solved using a spatially periodic model of a porousmedium. The practical procedure to compute these tensors is provided.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enHomogeneous porous media
dc.subject.enTwo-phase flow
dc.subject.enInertial or non-Darcian flow
dc.subject.enUp-scaling
dc.subject.enVolume averaging
dc.title.enTwo-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model
dc.typeArticle de revue
dc.identifier.doi10.1007/s11242-008-9231-y
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.journalTransport in Porous Media
bordeaux.page371-400
bordeaux.volume75
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01174658
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01174658v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Transport%20in%20Porous%20Media&rft.date=2008-05&rft.volume=75&rft.issue=3&rft.spage=371-400&rft.epage=371-400&rft.eissn=0169-3913&rft.issn=0169-3913&rft.au=LASSEUX,%20Didier&AHMADI-SENICHAULT,%20Azita&ABBASIAN%20ARANI,%20Ali%20Akbar&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée