Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
dc.contributor.authorDOERKEN, S.
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorAVALOS FERNANDEZ, Marta
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorLAGARDE, Emmanuel
dc.contributor.authorSCHUMACHER, M.
dc.date.accessioned2020-06-05T10:41:54Z
dc.date.available2020-06-05T10:41:54Z
dc.date.issued2019-05-21
dc.identifier.issn1932-6203en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/7769
dc.description.abstractEnEstimating and selecting risk factors with extremely low prevalences of exposure for a binary outcome is a challenge because classical standard techniques, markedly logistic regression, often fail to provide meaningful results in such settings. While penalized regression methods are widely used in high-dimensional settings, we were able to show their usefulness in low-dimensional settings as well. Specifically, we demonstrate that Firth correction, ridge, the lasso and boosting all improve the estimation for low-prevalence risk factors. While the methods themselves are well-established, comparison studies are needed to assess their potential benefits in this context. This is done here using the dataset of a large unmatched case-control study from France (2005-2008) about the relationship between prescription medicines and road traffic accidents and an accompanying simulation study. Results show that the estimation of risk factors with prevalences below 0.1% can be drastically improved by using Firth correction and boosting in particular, especially for ultra-low prevalences. When a moderate number of low prevalence exposures is available, we recommend the use of penalized techniques.
dc.language.isoENen_US
dc.rightsAttribution 4.0 International (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.enSISTM
dc.subject.enIETO
dc.title.enPenalized logistic regression with low prevalence exposures beyond high dimensional settings
dc.title.alternativePLoS Oneen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1371/journal.pone.0217057en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed31107924en_US
bordeaux.journalPLoS ONEen_US
bordeaux.pagee0217057en_US
bordeaux.volume14en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue5en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS%20ONE&rft.date=2019-05-21&rft.volume=14&rft.issue=5&rft.spage=e0217057&rft.epage=e0217057&rft.eissn=1932-6203&rft.issn=1932-6203&rft.au=DOERKEN,%20S.&AVALOS%20FERNANDEZ,%20Marta&LAGARDE,%20Emmanuel&SCHUMACHER,%20M.&rft.genre=article


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem