Afficher la notice abrégée

hal.structure.identifierUniversity of Auckland [Auckland]
dc.contributor.authorFLAY, R
hal.structure.identifierUniversity of Auckland [Auckland]
dc.contributor.authorPIARD, A
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorBOT, Patrick
dc.contributor.editorPatrick Bot
dc.date.accessioned2021-05-14T09:50:33Z
dc.date.available2021-05-14T09:50:33Z
dc.date.issued2017-06
dc.date.conference2017-06
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77293
dc.description.abstractEnWhile the aerodynamics of upwind sails are relatively well understood, flows past downwind sails are still very challenging. Indeed, downwind sails which can be considered as highly cambered thin wing profiles, are well known for their massive separations and complex wake flows. Therefore the aim of this study was to examine a very simple highly curved thin wing profile in order to elucidate features of real flow behaviours past such sails. Therefore, a two-dimensional thin circular arc has been investigated. The studied model had a camber of 21-22% comparable to downwind sails. The wind tunnel pressure measurements have enabled us to understand why the sudden transition in the lift force exists at low incidences but not at higher incidences. At low incidences the flow stagnates on the top face and a laminar boundary layer develops first. If the Reynolds number is too low, the laminar boundary layer is not able to transition to turbulent. This laminar boundary layer separates very early leading to low lift and high drag. However, when the Reynolds number is high enough, the boundary layer transitions to turbulent creating a laminar separation bubble. This more robust boundary layer can withstand the adverse pressure gradient and stay attached much longer, creating a sudden significant increase in lift and a drop in drag. At high incidences, a leading edge bubble forces the flow to transition to turbulent. Therefore, the boundary layer is fully turbulent irrespective of the Reynolds number and a unique flow regime exists at these high incidences.
dc.language.isoen
dc.title.enAERODYNAMICS OF A HIGHLY CAMBERED CIRCULAR ARC AEROFOIL: EXPERIMENTAL INVESTIGATIONS
dc.typeCommunication dans un congrès avec actes
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.page150-162
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryFR
bordeaux.title.proceedingINNOVSAIL International Conference on Innovation in High Performance Sailing Yachts
bordeaux.conference.cityLorient
bordeaux.peerReviewedoui
hal.identifierhal-01583557
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01583557v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2017-06&rft.spage=150-162&rft.epage=150-162&rft.au=FLAY,%20R&PIARD,%20A&BOT,%20Patrick&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée