Mostrar el registro sencillo del ítem

dc.contributor.authorLE, T.D.
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.contributor.authorNGUYEN, X.P.
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorVIGNOLES, G.
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorMANO, Nicolas
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorKUHN, A.
dc.date.accessioned2021-05-14T09:50:31Z
dc.date.available2021-05-14T09:50:31Z
dc.date.issued2017-07-25
dc.identifier.issn0009-2509
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77291
dc.description.abstractEnA multi-scale model of diffusion/reaction at play in a porous electrode is developed and solutions to the physico-electro-chemical coupled problem are provided. This represents a key step to progress in the optimization of new efficient and innovative micro-electro-devices that needs to be addressed from a chemical engineering point of view. The pore-scale model based on Fickian diffusion in the porous medium and Nernstian layer and the electrochemical reaction governed by the Buttler-Volmer equation isupscaled using volume averaging to obtain a macroscopic model that describes the process on an effective equivalent medium. The validity and accuracy of the macroscopic model is successfully checked through the comparison with direct numerical simulations of the initial microscale model for amperometry tests. Predictions obtained from the upscaled model on the current intensity versus the scanning potential during voltammetry reveal to be in very good agreement with experimental results reported in the literature. These results show the capability of the macroscopic model to analyze the behavior of the porous electrode. In particular, it provides an efficient tool to study the dependence of the current intensity on the microstructure of the porous material and on the electrochemical parameters with the perspective of optimizing the electrode efficiency.
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
dc.language.isoen
dc.publisherElsevier
dc.subject.enPorous electrode
dc.subject.enDiffusion
dc.subject.enHeterogeneous reaction
dc.subject.enVolume averaging method
dc.title.enMulti-scale modeling of diffusion and electrochemical reactions in porous micro-electrodes
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ces.2017.07.039
dc.subject.halChimie/Catalyse
bordeaux.journalChemical Engineering Science
bordeaux.pagepp. 153-167
bordeaux.volume173
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01583950
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01583950v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemical%20Engineering%20Science&rft.date=2017-07-25&rft.volume=173&rft.spage=pp.%20153-167&rft.epage=pp.%20153-167&rft.eissn=0009-2509&rft.issn=0009-2509&rft.au=LE,%20T.D.&LASSEUX,%20Didier&NGUYEN,%20X.P.&VIGNOLES,%20G.&MANO,%20Nicolas&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem