Afficher la notice abrégée

dc.contributor.authorUR REHMAN, Faizan
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorAFYOUNI, Imad
hal.structure.identifierLaboratoire d'Informatique de Grenoble [LIG ]
dc.contributor.authorLBATH, Ahmed
dc.contributor.authorSOHAIB, Ahmad
dc.contributor.authorBASALAMAH, Saleh
dc.contributor.authorMOKBEL, Mohamed
dc.date.accessioned2021-05-14T09:43:32Z
dc.date.available2021-05-14T09:43:32Z
dc.date.issued2017
dc.date.conference2017
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76819
dc.description.abstractEnThis paper discusses the next generation of digital maps, by positing that maps in future will intelligently self-update themselves based on distinctive events extracted dynamically from social media streams or other crowd-sourced data. To realize this concept, the challenges include developing a scalable and efficient system to deal with a variety of un-structured data streams, applying NLP and clustering techniques to extract relevant information from these streams, and inferring the spatio-temporal scope of detected events. This paper demonstrates Hadath, a system that extracts live events from social data by encapsulating incoming unstruc-tured data into generic data packets. The system implements a hierarchical in-memory indexing scheme to support efficient access to data packets, as well as for memory flushing purposes. Data packets are then processed to extract Events of Interest (EoI), based on a multi-dimensional clustering technique. Next, we establish the spatial scope and the level of abstraction of each event. This allows us to show live events in correspondence to the scale of the view-when viewing at a city scale, we see events of higher significance, while zooming in to a neighborhood highlights events of a more local interest. The final output creates a unique and dynamic map browsing experience.
dc.language.isoen
dc.source.titleAdvances in Database Technology - EDBT 2017, 20th International Conference on Extending Database Technology, Venice, Italy, March 21-24, Proceedings
dc.subject.enEvent-Enriched Maps
dc.subject.enCrowdsourced Data
dc.subject.enSpatio-Temporal Scope
dc.title.enBuilding Multi-Resolution Event-Enriched Maps From Social Data
dc.typeCommunication dans un congrès avec actes
dc.identifier.doi10.5441/002/edbt.2017.78
dc.subject.halInformatique [cs]
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryIT
bordeaux.title.proceedingEDBT 2017
bordeaux.conference.cityVenice
bordeaux.peerReviewedoui
hal.identifierhal-02068824
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02068824v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Advances%20in%20Database%20Technology%20-%20EDBT%202017,%2020th%20International%20Conference%20on%20Extending%20Database%20Technology,%20Venice,%20Italy,%20March%2021-24&rft.date=2017&rft.au=UR%20REHMAN,%20Faizan&AFYOUNI,%20Imad&LBATH,%20Ahmed&SOHAIB,%20Ahmad&BASALAMAH,%20Saleh&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée