Afficher la notice abrégée

dc.contributor.authorDEL SORBO, Pietro
dc.contributor.authorGIRARDOT, Jeremie
IDREF: 180810375
dc.contributor.authorDAU, Frederic
dc.contributor.authorIORDANOFF, Ivan
dc.date.accessioned2021-05-14T09:42:59Z
dc.date.available2021-05-14T09:42:59Z
dc.date.conference2018-09-09
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76764
dc.description.abstractEnDry fabrics comprised of high performance polymeric fibers have been widely used as protection layers in structures submitted to high velocity impacts (HVI). Their outstanding impact energy dissipation ability combined with an high strength-to-weight ratio make them a preferable choice in different applications such as bullet vests or blade containment systems over standard materials. Among the different approaches adopted to study these structures numerical methods assume a central role. Thanks to their reduced costs and the related possibility of evaluating the effects of single phenomena, they are often used to predict the structure ballistic limits or to study the physical events which occur during the penetration. Among the different strategies adopted to model a fabric, mesoscopic models have been largely adopted by different authors. These models assume the yarns as a continuum body while the fabric geometry is explicitly described. Nowadays yarn material models are universally assumed to be linear elastic and orthotropic. This modelling approach mostly focuses on the longitudinal behaviour of the yarn, however fiber-scale analyses and experimental results shows the importance of three-dimensional stress state on the ballistic limit. In order to obtain a three-dimensional description of the yarn strain state during the impact , a novel hyper-elastic model for yarn structures here is developed. In a first step, fiber-level preliminary analyses have been performed to obtain the effective behaviour of these structure under the projectile collision. In the second step, the hyperelastic model has been implemented and identified thanks to microscopic elementary tests. Finally, a continuum model of the yarn have been perfomed. First results show the relevance of the hyperelastic model compared to the fiber-level observation and enhance the limit of the classical linear elastic material model.
dc.language.isoen
dc.source.titleEPJ Web of Conferences
dc.title.enHyperelastic modelling of yarn structures for dynamic applica- tions
dc.typeCommunication dans un congrès avec actes
dc.identifier.doi10.1051/epjconf/201818301031
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des matériaux [physics.class-ph]
bordeaux.volume183
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryFR
bordeaux.title.proceeding12th International DYMAT Conference
bordeaux.conference.cityArcachon
bordeaux.peerReviewedoui
hal.identifierhal-02133419
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02133419v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=EPJ%20Web%20of%20Conferences&rft.volume=183&rft.au=DEL%20SORBO,%20Pietro&GIRARDOT,%20Jeremie&DAU,%20Frederic&IORDANOFF,%20Ivan&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée