Afficher la notice abrégée

hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorBAY-AHMED, Hadj-Ahmed
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorDARE-EMZIVAT, Delphine
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorBOUDRAA, Abdel
dc.date.accessioned2021-05-14T09:42:24Z
dc.date.available2021-05-14T09:42:24Z
dc.date.issued2017-11
dc.date.conference2017-11
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76732
dc.description.abstractIn this work, we consider the problem of graph signals classification. We investigate the relevance of two attributes, namely the total variation (TV) and the graph energy (GE) for graph signals classification. The TV is a compact and informative attribute for efficient graph discrimination. The GE information is used to quantify the complexity of the graph structure which is a pertinent information. Based on these two attributes, three similarity measures are introduced. Key of these measures is their low complexity. The effectiveness of these similarity measures are illustrated on five data sets and the results compared to those of five kernel-based methods of the literature. We report results on computation runtime and classification accuracy on graph benchmark data sets. The obtained results confirm the effectiveness of the proposed methods in terms of CPU runtime and of classification accuracy. These findings also show the potential of TV and GE informations for graph signals classification.
dc.language.isoen
dc.source.title5th IEEE Global Conference on Signal and Information Processing
dc.titleGraph Signals Classification Using Total Variation and Graph Energy Informations
dc.typeCommunication dans un congrès avec actes
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
bordeaux.page1-5
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryCA
bordeaux.title.proceeding5th IEEE Global Conference on Signal and Information Processing
bordeaux.conference.cityMONTREAL
bordeaux.peerReviewedoui
hal.identifierhal-02140730
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02140730v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Graph%20Signals%20Classification%20Using%20Total%20Variation%20and%20Graph%20Energy%20Informations&rft.btitle=5th%20IEEE%20Global%20Conference%20on%20Signal%20and%20Information%20Processing&rft.atitle=Graph%20Signals%20Classification%20Using%20Total%20Variation%20and%20Graph%20Energy%20Informations&rft.date=2017-11&rft.spage=1-5&rft.epage=1-5&rft.au=BAY-AHMED,%20Hadj-Ahmed&DARE-EMZIVAT,%20Delphine&BOUDRAA,%20Abdel&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée