Afficher la notice abrégée

hal.structure.identifierThe University of Queensland [UQ [All campuses : Brisbane, Dutton Park Gatton, Herston, St Lucia and other locations]]
dc.contributor.authorLENG, X
dc.contributor.authorLUBIN, Pierre
hal.structure.identifierThe University of Queensland [UQ [All campuses : Brisbane, Dutton Park Gatton, Herston, St Lucia and other locations]]
dc.contributor.authorCHANSON, Hubert
dc.date.accessioned2021-05-14T09:42:06Z
dc.date.available2021-05-14T09:42:06Z
dc.date.issued2017
dc.date.conference2017-08-13
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76699
dc.description.abstractEnA tidal bore may form during spring tide conditions when the tidal range exceeds 4 to 6 m in a natural estuary with a funnel shaped river mouth and shallow initial water level. The propagation of tidal bores is a highly unsteady turbulent process associated with intensive sediment scouring and mixing. To date few physical and numerical studies documented the unsteady turbulent process of tidal bore propagation. Recent numerical CFD models lacked careful experimental validations. The present study aims to provide new results on CFD numerical modelling of tidal bore propagation with a wide range of Froude numbers (1.2 to 2.1) and systematic experimental validations. The model solved the incompressible Navier-Stokes equations in its two-phase flow forms using Large Eddy Simulation (LES). Both 2D and 3D simulations were conducted; the inlet turbulence of the 3D models was simulated by a Synthetic Eddy Method (SEM). The physical experiments were based upon an ensemble-average technique, with measurements of water depth and velocity repeated 25 times for each flow condition. The 2D CFD simulations showed good agreement in terms of free-surface elevations with experimental results, for the range of tested Froude numbers. Mesh grid refinement only improved the accuracy for some but not all flow conditions. The 2D velocity data showed qualitative and quantitative agreement, but only at a selective range of vertical elevation beneath the free-surface, where the inlet velocity were correctly reproduced. The 3D simulation highlighted a numerical boundary layer, the thickness of which agreed with the experimental results. The time-averaged velocity and velocity RMS of the numerical model data showed a closer agreement with the physical model outside the boundary layer. The development of the numerical boundary layer was clearly observed in the CFD model results.
dc.language.isoen
dc.publisherInternational Association for Hydro-Environment Engineering & Research (IAHR)
dc.subject.enTidal bores
dc.subject.enCFD modelling
dc.subject.enLarge Eddy Simulation LES
dc.subject.enphysical model validation
dc.subject.enturbulence
dc.title.enCFD Modelling of Breaking and Undular Tidal Bores with Physical Validation
dc.typeCommunication dans un congrès avec actes
dc.subject.halSciences de l'ingénieur [physics]/Génie civil
bordeaux.page5072--5081
bordeaux.volume7
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryMY
bordeaux.title.proceeding37th IAHR World Congress
bordeaux.conference.cityKuala Lumpur
bordeaux.peerReviewedoui
hal.identifierhal-02158917
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02158917v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2017&rft.volume=7&rft.spage=5072--5081&rft.epage=5072--5081&rft.au=LENG,%20X&LUBIN,%20Pierre&CHANSON,%20Hubert&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée