Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorDESCHAMPS, Marc
IDREF: 061797499
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorPONCELET, Olivier
dc.date.accessioned2021-05-14T09:37:40Z
dc.date.available2021-05-14T09:37:40Z
dc.date.issued2019-10
dc.identifier.issn1937-1632
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76364
dc.description.abstractEnIn contrast to homogeneous plane waves, solutions of the Chris-toffel equation for anisotropic media, for which a determined number of rays can be observed in a fixed direction of observation, inhomogeneous plane waves provide a continuum of "rays" that propagate in this direction. From this continuum, some complex plane waves can be extracted for verifying a definition of quasi-arrivals, based on the condition that the time of flight would vary the less in extension to the Fermat's principle that stipulates a stationary time of flight for wave arrivals. The dynamic response in some angular zones contain prominent, although not singular, features whose arrivals cannot be described by the classical ray theory. These wave packet's arrivals can be described by quasi-fronts associated to specific inhomogeneous plane waves. The extent of the phenomena depends on the degree of anisotropy. For weak anisotropy, such quasi-fronts can be observed. For strong anisotropy, the use of inhomogeneous plane waves, due to their complex slowness vector, permits a simple description of quasi-arrivals that refer to the internal diffraction phenomenon. Some examples are given for different wave surfaces, showing how the wave fronts can be extended beyond the cuspidal edges for forming closed wave surfaces.
dc.language.isoen
dc.publisherAmerican Institute of Mathematical Sciences
dc.subject.enAnisotropic media
dc.subject.enChristoffel's equation
dc.subject.encomplex rays
dc.subject.enFermat's principle
dc.subject.enwave propagation
dc.title.enComplex ray in anisotropic solids: Extended Fermat's principle
dc.typeArticle de revue
dc.identifier.doi10.3934/dcdss.2019110
dc.subject.halPhysique [physics]/Mécanique [physics]/Acoustique [physics.class-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalDiscrete and Continuous Dynamical Systems - Series S
bordeaux.page1623-1633
bordeaux.volume12
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue6
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02415870
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02415870v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Discrete%20and%20Continuous%20Dynamical%20Systems%20-%20Series%20S&rft.date=2019-10&rft.volume=12&rft.issue=6&rft.spage=1623-1633&rft.epage=1623-1633&rft.eissn=1937-1632&rft.issn=1937-1632&rft.au=DESCHAMPS,%20Marc&PONCELET,%20Olivier&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée