Afficher la notice abrégée

hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorMOREAU, Charles
hal.structure.identifierLaboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorBERBENNI, Stéphane
dc.date.accessioned2021-05-14T09:35:48Z
dc.date.available2021-05-14T09:35:48Z
dc.date.issued2015
dc.identifier.issn0749-6419
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76239
dc.description.abstractEnThe modeling of heterogeneous materials with an elasto-viscoplastic behavior is generally complex because of the differential nature of the local constitutive law. Indeed, the resolution of the heterogeneous problem involves space time couplings which are generally difficult to estimate. In the present paper, a new homogenization model based on an affine linearization of the viscoplastic flow rule is proposed. First, the heterogeneous problem is written in the form of an integral equation. The purely thermoelastic and purely viscoplastic heterogeneous problems are solved independently using the self-consistent approximation. Using translated field techniques, the solutions of the above problems are combined to obtain the final self-consistent formulation. Then, some applications concerning two-phase fiber-reinforced composites and polycrystalline materials are presented. When compared to the reference solutions obtained from a FFT spectral method, a good description of the overall response of heterogeneous materials is obtained with the proposed model even when the viscoplastic flow rule is highly non-linear. Thanks to this approach, which is entirely formulated in the real-time space, the present model can be used for studying the response of heterogeneous materials submitted to complex thermo-mechanical loading paths with a good numerical efficiency.
dc.description.sponsorshipDesign des Alliages Métalliques pour Allègement des Structures - ANR-11-LABX-0008
dc.language.isoen
dc.publisherElsevier
dc.subjectFibre-reinforced composite
dc.subjectElastic-viscoplastic material
dc.subjectMicrostructures
dc.subjectPolycrystalline material
dc.subjectHomogenization
dc.subject.enHomogenization
dc.subject.enPolycrystalline material
dc.subject.enElastic-viscoplastic material
dc.subject.enFiber-reinforced composite
dc.subject.enMicrostructures
dc.title.enAn affine formulation for the self-consistent modeling of elasto-viscoplastic heterogeneous materials based on the translated field method
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ijplas.2014.08.011
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
bordeaux.journalInternational Journal of Plasticity
bordeaux.page134-150
bordeaux.volume64
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01513860
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01513860v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Plasticity&rft.date=2015&rft.volume=64&rft.spage=134-150&rft.epage=134-150&rft.eissn=0749-6419&rft.issn=0749-6419&rft.au=MOREAU,%20Charles&BERBENNI,%20St%C3%A9phane&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée