Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorJACQUIN, Dimitri
hal.structure.identifierCentre de Mise en Forme des Matériaux [CEMEF]
dc.contributor.authorGUILLEMOT, Gildas
dc.date.accessioned2021-05-14T09:33:42Z
dc.date.available2021-05-14T09:33:42Z
dc.date.issued2021
dc.identifier.issn0924-0136
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76073
dc.description.abstractEnFriction stir welding (FSW) process is currently considered as a promising alternative to join aluminium alloys. Indeed, this solid-state welding technique is particularly recommended for the assembly of these materials. Since parts are not heated above their melting temperature, FSW process may prevent solidification defects encountered in joining aluminium alloys and known as limitations to the dissemination of these materials in industries. During the past years, large literature has been devoted to the modelling of microstructural evolution in aluminium alloys during FSW processes and mainly dedicated to the analysis of precipitate evolutions and grain recrystallization mechanisms. Precipitate size distribution models have aroused widespread interest in recent years demonstrating their relevance to follow precipitation process in multicomponent alloys and multiphase systems. Efficient recrystallization models are also available and based on various grain growth mechanisms. In addition, multi-scale coupling strategies have recently emerged considering thermal, mechanical and metallurgical solutions. Consequently, the effect of FSW process parameters on weld properties is now investigated to determine optimized welding strategies regarding microstructure evolution. This research is based on reliable models reported in the literature enhancing the estimation of final weld state and associated properties as an answer to industrial needs. Validations of proposed modelling strategies have been reported based on in-depth analyses of experimental observations. This present work proposes a review of recent models dedicated to microstructural evolutions in aluminium alloys during FSW process. The interest and efficiency of current approaches will be discussed to highlight their limitations. Guidelines will propose new routes toward enhanced modelling strategies for future developments.
dc.language.isoen
dc.publisherElsevier
dc.subject.enFriction Stir Welding
dc.subject.enAluminium alloys
dc.subject.enMicrostructure modelling
dc.subject.enPrecipitation process
dc.subject.enRecrystallization mechanism
dc.subject.enGuidelines
dc.title.enA review of microstructural changes occurring during FSW in aluminium alloys and their modelling
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jmatprotec.2020.116706
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
bordeaux.journalJournal of Materials Processing Technology
bordeaux.page116706
bordeaux.volume288
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02911059
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02911059v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Materials%20Processing%20Technology&rft.date=2021&rft.volume=288&rft.spage=116706&rft.epage=116706&rft.eissn=0924-0136&rft.issn=0924-0136&rft.au=JACQUIN,%20Dimitri&GUILLEMOT,%20Gildas&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée