Mostrar el registro sencillo del ítem

dc.contributor.authorZHAO, H.
dc.contributor.authorOREJON, D.
dc.contributor.authorMACKENZIE-DOVER, C.
dc.contributor.authorVALLURI, P.
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorSHANAHAN, Martin
dc.contributor.authorSEFIANE, K.
dc.date2020
dc.date.accessioned2021-05-14T09:33:08Z
dc.date.available2021-05-14T09:33:08Z
dc.date.issued2020
dc.identifier.issn0003-6951
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76029
dc.description.abstractEnLiquid droplets move readily under the influence of surface tension gradients on their substrates. Substrates decorated with parallel microgrooves, or striations, presenting the advantage of homogeneous chemical properties yet varying the topological characteristics on either side of a straight-line boundary, are considered in this study. The basic type of geometry consists of hydrophobic micro-striations/rails perpendicular to the boundary, with the systematic variation of the width to spacing ratio, thus changing the solid–liquid contact fraction and inducing a well-defined wettability contrast across the boundary. Droplets in the Cassie–Baxter state, straddling the boundary, move along the wettability contrast in order to reduce the overall surface free energy. The results show the importance of the average solid fraction and contrasting fraction in a wide range of given geometries across the boundary on droplet motion. A unified criterion for contrasting striated surfaces, which describes the displacement and the velocity of the droplets, is suggested, providing guidelines for droplet manipulation on micro-striated/railed surfaces.The authors would like to acknowledge the support of the European Space Agency through ESA Contract No. 4000129506/20/NL/PG and the support received from the Engineering and Physical Sciences Research Council (EPSRC) through Grant No. EP/P005705/1. The authors also acknowledge the EC-RISE-ThermaSMART project, which received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 778104.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.title.enDroplet Motion on Contrasting Striated Surfaces
dc.typeArticle de revue
dc.identifier.doi10.1063/5.0009364
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalApplied Physics Letters
bordeaux.page251604
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue116
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02945400
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02945400v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Physics%20Letters&rft.date=2020&rft.issue=116&rft.spage=251604&rft.epage=251604&rft.eissn=0003-6951&rft.issn=0003-6951&rft.au=ZHAO,%20H.&OREJON,%20D.&MACKENZIE-DOVER,%20C.&VALLURI,%20P.&SHANAHAN,%20Martin&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem