Afficher la notice abrégée

hal.structure.identifierUniversità degli Studi di Firenze = University of Florence = Université de Florence [UniFI]
dc.contributor.authorSARYCHEV, Andrey
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorSHUVALOV, Alexander
IDREF: 168470004
hal.structure.identifierUniversità degli Studi di Firenze = University of Florence = Université de Florence [UniFI]
dc.contributor.authorSPADINI, Marco
dc.date.accessioned2021-05-14T09:31:35Z
dc.date.available2021-05-14T09:31:35Z
dc.date.issued2020
dc.identifier.issn0022-3239
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75903
dc.description.abstractEnWe consider the propagation of surface shear waves in a halfplane, whose shear modulus and density depend continuously on the depth coordinate. The problem amounts to studying the parametric Sturm-Liouville equation on a half-line with frequency and wave number as the parameters. The Neumann (traction-free) boundary condition and the requirement of decay at infinity are imposed. The condition of solvability of the boundary value problem determines the dispersion spectrum in the wave number/frequency plane for the corresponding surface wave. We establish the criteria for nonexistence of surface waves and for the existence of a finite number of surface wave solutions; the number grows and tends to infinity with the wave number. The most intriguing result is a possibility of the existence of infinite number of solutions for any given wave number. These three options are conditioned by the asymptotic behaviour of the shear modulus and density close to infinite depth.
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enSurface shear waves in a half-plane with depth-variant structure
dc.typeArticle de revue
dc.identifier.doi10.1007/s10957-019-01501-2
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.subject.halPhysique [physics]
bordeaux.journalJournal of Optimization Theory and Applications
bordeaux.page21-42
bordeaux.volume184
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03048998
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03048998v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Optimization%20Theory%20and%20Applications&rft.date=2020&rft.volume=184&rft.spage=21-42&rft.epage=21-42&rft.eissn=0022-3239&rft.issn=0022-3239&rft.au=SARYCHEV,%20Andrey&SHUVALOV,%20Alexander&SPADINI,%20Marco&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée