Mostrar el registro sencillo del ítem

dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.contributor.authorVALDÉS-PARADA, F.
dc.date.accessioned2021-05-14T09:31:13Z
dc.date.available2021-05-14T09:31:13Z
dc.date.issued2017-04
dc.identifier.issn1070-6631
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75869
dc.description.abstractEnWe report on symmetry properties of tensorial effective transport coefficients characteristic of manytransport phenomena in porous systems at the macroscopic scale. The effective coefficients in themacroscopic models (derived by upscaling (volume averaging) the governing equations at the underlyingscale) are obtained from the solution of closure problems that allow passing the informationfrom the lower to the upper scale. The symmetry properties of the macroscopic coefficients areidentified from a formal analysis of the closure problems and this is illustrated for several differentphysical mechanisms, namely, one-phase flow in homogeneous porous media involving inertialeffects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynoldsmodel including slip effects, single-phase flow in heterogeneous porous media embedding a porousmatrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, aswell as dispersive heat and mass transport. The results from the analysis of these study cases aresummarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreduciblydecomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow,the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow inthe slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remainsvalid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeabilitytensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric,whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heattransfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latterbeing a consequence of convective transport only. A similar result is achieved for mass dispersion.Beyond the physical mechanisms under consideration in the present work, the reported technique canbe viewed as a general methodology applicable to any type of upscaled model obtained by volumeaveraging.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.title.enSymmetry properties of macroscopic transport coefficients in porous media
dc.typeArticle de revue
dc.identifier.doi10.1063/1.4979907
dc.subject.halSciences de l'ingénieur [physics]
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifs
dc.subject.halSciences de l'ingénieur [physics]/Génie des procédés
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]
dc.subject.halMathématiques [math]
dc.subject.halPhysique [physics]
dc.subject.halSciences de l'environnement
dc.subject.halPlanète et Univers [physics]
bordeaux.journalPhysics of Fluids
bordeaux.page043303
bordeaux.volume29
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03140913
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03140913v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physics%20of%20Fluids&rft.date=2017-04&rft.volume=29&rft.issue=4&rft.spage=043303&rft.epage=043303&rft.eissn=1070-6631&rft.issn=1070-6631&rft.au=LASSEUX,%20Didier&VALD%C3%89S-PARADA,%20F.&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem