Mostrar el registro sencillo del ítem

dc.contributor.authorLE, T.D.
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.contributor.authorNGUYEN, X.P.
dc.contributor.authorVIGNOLES, G.
dc.contributor.authorMANO, Nicolas
dc.contributor.authorKUHN, A.
dc.date.accessioned2021-05-14T09:30:56Z
dc.date.available2021-05-14T09:30:56Z
dc.date.issued2017-12
dc.identifier.issn0009-2509
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75852
dc.description.abstractEnA multi-scale model of diffusion/reaction at play in a porous electrode is developed and solutions to thephysico-electro-chemical coupled problem are provided. This represents a key step to progress in theoptimization of new efficient and innovative micro-electro-devices that needs to be addressed from achemical engineering point of view. The pore-scale model based on Fickian diffusion in the porous mediumand Nernstian layer and the electrochemical reaction governed by the Buttler-Volmer equation isupscaled using volume averaging to obtain a macroscopic model that describes the process on an effectiveequivalent medium. The validity and accuracy of the macroscopic model is successfully checkedthrough the comparison with direct numerical simulations of the initial microscale model for amperometrytests. Predictions obtained from the upscaled model on the current intensity versus the scanningpotential during voltammetry reveal to be in very good agreement with experimental results reportedin the literature. These results show the capability of the macroscopic model to analyze the behaviorof the porous electrode. In particular, it provides an efficient tool to study the dependence of the currentintensity on the microstructure of the porous material and on the electrochemical parameters with theperspective of optimizing the electrode efficiency.
dc.language.isoen
dc.publisherElsevier
dc.subject.enPorous elctrode Diffusion Heterogeneous reaction Volume averaging method
dc.title.enMulti-scale modeling of diffusion and electrochemical reactions in porous micro-electrodes
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ces.2017.07.039
dc.subject.halSciences de l'ingénieur [physics]
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifs
dc.subject.halChimie/Catalyse
dc.subject.halChimie/Génie chimique
dc.subject.halChimie/Chimie théorique et/ou physique
bordeaux.journalChemical Engineering Science
bordeaux.page153-167
bordeaux.volume173
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03151242
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03151242v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemical%20Engineering%20Science&rft.date=2017-12&rft.volume=173&rft.spage=153-167&rft.epage=153-167&rft.eissn=0009-2509&rft.issn=0009-2509&rft.au=LE,%20T.D.&LASSEUX,%20Didier&NGUYEN,%20X.P.&VIGNOLES,%20G.&MANO,%20Nicolas&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem