Afficher la notice abrégée

hal.structure.identifierChinese Academy of Sciences [Beijing] [CAS]
dc.contributor.authorPAN, Xiangnan
hal.structure.identifierChinese Academy of Sciences [Beijing] [CAS]
dc.contributor.authorXU, Shouwen
hal.structure.identifierChinese Academy of Sciences [Beijing] [CAS]
dc.contributor.authorQIAN, Guian
hal.structure.identifierLaboratoire Energétique Mécanique Electromagnétisme [LEME]
dc.contributor.authorNIKITIN, Alexander
hal.structure.identifierRussian Academy of Sciences [Moscow] [RAS]
dc.contributor.authorSHANYAVSKIY, Andrey
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorPALIN LUC, Thierry
IDREF: 136498752
hal.structure.identifierChinese Academy of Geological Sciences [Beijing] [CAGS]
dc.contributor.authorHONG, Youshi
dc.date.accessioned2021-05-14T09:30:22Z
dc.date.available2021-05-14T09:30:22Z
dc.date.issued2020-11
dc.identifier.issn0921-5093
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75804
dc.description.abstractEnTraditionally, equiaxed alpha grains rather than lamellar microstructure (LM) domains in titanium alloys are regarded as potential internal crack origins in high-cycle fatigue (HCF) and very-high-cycle fatigue (VHCF) re-gimes. Here, we found that the fatigue crack is prone to initiate from a large LM domain in a titanium alloy with the composition of LM and equiaxed microstructure (EM) of fine alpha grains. Then, the mechanisms of internal crack initiation and early growth for the cases of HCF and VHCF under stress ratio R =-1, 0.1 and 0.5 were addressed and a mechanism chart was constructed to illustrate the internal cracking behavior, especially showing that the numerous cyclic pressing process dominates the related microstructure evolution with grain size refinement and nanograin formation underneath the fracture surfaces in the region of crack initiation and early growth.
dc.language.isoen
dc.publisherElsevier
dc.subject.enTitanium alloy
dc.subject.enCrack initiation
dc.subject.enFacet
dc.subject.enVery-high-cycle fatigue
dc.subject.enLamellar microstructure
dc.title.enThe mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure
dc.typeArticle de revue
dc.identifier.doi10.1016/j.msea.2020.140110
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalMaterials Science and Engineering: A
bordeaux.page1-14
bordeaux.volume798
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03170638
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03170638v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Materials%20Science%20and%20Engineering:%20A&rft.date=2020-11&rft.volume=798&rft.spage=1-14&rft.epage=1-14&rft.eissn=0921-5093&rft.issn=0921-5093&rft.au=PAN,%20Xiangnan&XU,%20Shouwen&QIAN,%20Guian&NIKITIN,%20Alexander&SHANYAVSKIY,%20Andrey&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée