Afficher la notice abrégée

hal.structure.identifierShanghai Maritime University
dc.contributor.authorWANG, Zhihuan
hal.structure.identifierShanghai Maritime University
dc.contributor.authorYAO, Mengyuan
hal.structure.identifierShanghai Maritime University
dc.contributor.authorMENG, Chenguang
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
hal.structure.identifierShanghai Maritime University
dc.contributor.authorCLARAMUNT, Christophe
dc.date.accessioned2021-05-14T09:30:03Z
dc.date.available2021-05-14T09:30:03Z
dc.date.issued2020
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75780
dc.description.abstractPreventing and controlling the risk of importing the coronavirus disease (COVID-19) has rapidly become a major concern. In addition to air freight, ocean-going ships play a non-negligible role in spreading COVID-19 due to frequent visits to countries with infected populations. This research introduces a method to dynamically assess the infection risk of ships based on a data-driven approach. It automatically identifies the ports and countries these ships approach based on their Automatic Identification Systems (AIS) data and a spatio-temporal density-based spatial clustering of applications with noise (ST_DBSCAN) algorithm. We derive daily and 14 day cumulative ship exposure indexes based on a series of country-based indices, such as population density, cumulative confirmed cases, and increased rate of confirmed cases. These indexes are classified into high-, middle-, and low-risk levels that are then coded as red, yellow, and green according to the health Quick Response (QR) code based on the reference exposure index of Wuhan on April 8, 2020. This method was applied to a real container ship deployed along a Eurasian route. The results showed that the proposed method can trace ship infection risk and provide a decision support mechanism to prevent and control overseas imported COVID-19 cases from international shipping.
dc.language.isoen
dc.subjectCOVID-19
dc.subjectinternational shipping
dc.subjectoverseas imported cases
dc.subjectrisk assessment
dc.subjectautomatic identification systems
dc.subjectST-DBSCAN
dc.subjecthealth QR code
dc.titleRisk Assessment of the Overseas Imported COVID-19 of Ocean-Going Ships Based on AIS and Infection Data
dc.typeArticle de revue
dc.identifier.doi10.3390/ijgi9060351
dc.subject.halInformatique [cs]
bordeaux.journalInternational Journal of Geo-Information
bordeaux.page351
bordeaux.volume9
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue6
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03200333
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03200333v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Risk%20Assessment%20of%20the%20Overseas%20Imported%20COVID-19%20of%20Ocean-Going%20Ships%20Based%20on%20AIS%20and%20Infection%20Data&rft.atitle=Risk%20Assessment%20of%20the%20Overseas%20Imported%20COVID-19%20of%20Ocean-Going%20Ships%20Based%20on%20AIS%20and%20Infection%20Data&rft.jtitle=International%20Journal%20of%20Geo-Information&rft.date=2020&rft.volume=9&rft.issue=6&rft.spage=351&rft.epage=351&rft.au=WANG,%20Zhihuan&YAO,%20Mengyuan&MENG,%20Chenguang&CLARAMUNT,%20Christophe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée