Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorAJANA, Soufiane
dc.contributor.authorACAR, N.
dc.contributor.authorBRETILLON, L.
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorHEJBLUM, Boris
ORCID: 0000-0003-0646-452X
IDREF: 189970316
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorJACQMIN-GADDA, Helene
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDELCOURT, Cecile
ORCID: 0000-0002-2099-0481
IDREF: 035105291
dc.date.accessioned2020-05-06T13:34:36Z
dc.date.available2020-05-06T13:34:36Z
dc.date.issued2019
dc.identifier.issn1367-4811 (Electronic) 1367-4803 (Linking)en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/7491
dc.description.abstractEnMOTIVATION: In some prediction analyses, predictors have a natural grouping structure and selecting predictors accounting for this additional information could be more effective for predicting the outcome accurately. Moreover, in a high dimension low sample size framework, obtaining a good predictive model becomes very challenging. The objective of this work was to investigate the benefits of dimension reduction in penalized regression methods, in terms of prediction performance and variable selection consistency, in high dimension low sample size data. Using two real datasets, we compared the performances of lasso, elastic net, group lasso, sparse group lasso, sparse partial least squares (PLS), group PLS and sparse group PLS. RESULTS: Considering dimension reduction in penalized regression methods improved the prediction accuracy. The sparse group PLS reached the lowest prediction error while consistently selecting a few predictors from a single group. AVAILABILITY AND IMPLEMENTATION: R codes for the prediction methods are freely available at https://github.com/SoufianeAjana/Blisar. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
dc.language.isoENen_US
dc.subject.enBiostatistics
dc.subject.enLEHA
dc.subject.enSISTM
dc.title.enBenefits of dimension reduction in penalized regression methods for high-dimensional grouped data: a case study in low sample size
dc.title.alternativeBioinformaticsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1093/bioinformatics/btz135en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed30931473en_US
bordeaux.journalBioinformatics (Oxford, England)en_US
bordeaux.page3628-3634en_US
bordeaux.volume35en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue19en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.teamLEHA_BPH
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.date=2019&rft.volume=35&rft.issue=19&rft.spage=3628-3634&rft.epage=3628-3634&rft.eissn=1367-4811%20(Electronic)%201367-4803%20(Linking)&rft.issn=1367-4811%20(Electronic)%201367-4803%20(Linking)&rft.au=AJANA,%20Soufiane&ACAR,%20N.&BRETILLON,%20L.&HEJBLUM,%20Boris&JACQMIN-GADDA,%20Helene&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record