Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.relation.isnodouble922314e5-6b13-4185-973d-56632934e611*
dc.contributor.authorHITAISHI, Vivek Pratap
dc.contributor.authorMAZURENKO, Ievgen
dc.contributor.authorHARB, Malek
dc.contributor.authorCLEMENT, Romain
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorTARIS, Marion
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorCASTANO, Sabine
dc.contributor.authorDUCHE, David
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLECOMTE, Sophie
dc.contributor.authorILBERT, Marianne
dc.contributor.authorDE POULPIQUET, Anne
dc.contributor.authorLOJOU, Elisabeth
dc.date.accessioned2020-04-07T09:39:20Z
dc.date.available2020-04-07T09:39:20Z
dc.date.issued2018
dc.identifier.issn2155-5435en_US
dc.identifier.other10.1021/acscatal.8b03443en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/4142
dc.description.abstractEnThe oxygen reduction reaction is the limiting step in fuel cells, and many works are in progress to find efficient cathode catalysts. Among them, bilirubin oxidases are copper-based enzymes that reduce oxygen into water with low overpotentials. The factors that ensure electrocatalytic efficiency of the enzyme in the immobilized state are not well understood, however. In this work, we use a multiple methodological approach on a wide range of pH values for protein adsorption and electrocatalysis to demonstrate the effect of electrostatic interactions on the electrical wiring, dynamics, and stability of a bilirubin oxidase adsorbed on self-assembled-monolayers on gold. We show on one hand that the global charge of the enzyme controls the loading on the interface and that the specific activity of the immobilized enzyme decreases with the enzyme coverage. On the other hand, we show that the dipole moment of the protein and the charge in the vicinity of the Cu site acting as the entry point of electrons drive the enzyme orientation. In case of weak electrostatic interactions, we demonstrate that local pH variation affects the electron transfer rate as a result of protein mobility on the surface. On the contrary, stronger electrostatic interactions destabilize the protein structure and affect the stability of the catalytic signal. These data illustrate the interplay between immobilized protein dynamics and local environment that control the efficiency of bioelectro catalysis.
dc.language.isoENen_US
dc.subject.enPeptides and proteins
dc.subject.enAdsorption
dc.subject.enGold
dc.subject.enElectrodes Stability
dc.title.enElectrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis
dc.title.alternativeACS Catal.en_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1021/acscatal.8b03443
dc.subject.halChimie/Matériauxen_US
bordeaux.journalAcs Catalysisen_US
bordeaux.page12004-12014en_US
bordeaux.volume8en_US
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN) - UMR 5248
bordeaux.issue12en_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03160313
hal.version1
hal.date.transferred2021-03-05T09:07:53Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acs%20Catalysis&rft.date=2018&rft.volume=8&rft.issue=12&rft.spage=12004-12014&rft.epage=12004-12014&rft.eissn=2155-5435&rft.issn=2155-5435&rft.au=HITAISHI,%20Vivek%20Pratap&MAZURENKO,%20Ievgen&HARB,%20Malek&CLEMENT,%20Romain&TARIS,%20Marion&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée